分析 (1)題要通過構(gòu)建全等三角形來求解.連接AD,可通過證△ADF和△BDE全等來求本題的結(jié)論.
(2)與(1)題的思路和解法一樣.
解答 (1)證明:連接AD,
∵AB=AC,∠A=90°,D為BC中點
∴AD=$\frac{BC}{2}$=BD=CD
且AD平分∠BAC
∴∠BAD=∠CAD=45°
在△BDE和△ADF中,
$\left\{\begin{array}{l}{BD=AD}\\{∠B=∠DAF=45°}\\{BE=AF}\end{array}\right.$
∴△BDE≌△ADF(SAS)
∴DE=DF,∠BDE=∠ADF
∵∠BDE+∠ADE=90°
∴∠ADF+∠ADE=90°
即:∠EDF=90°
∴△EDF為等腰直角三角形.
(2)仍為等腰直角三角形.
理由:∵△AFD≌△BED
∴DF=DE,∠ADF=∠BDE
∵∠ADF+∠FDB=90°
∴∠BDE+∠FDB=90°
即:∠EDF=90°
∴△EDF為等腰直角三角形.
點評 本題綜合考查了等腰三角形的性質(zhì)及判定、全等三角形的判定和性質(zhì)等知識,難度較大.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 50° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com