【題目】如圖,已知中,厘米,厘米,點(diǎn)為的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.
①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等, 與是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動速度和時(shí)間;若不能,請說明理由.
(2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動,求經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?
【答案】(1)①,理由見解析;②秒,厘米/秒;(2)經(jīng)過秒,點(diǎn)與點(diǎn)第一次在邊上相遇
【解析】
(1)①根據(jù)“路程=速度×?xí)r間”可得,然后證出,根據(jù)等邊對等角證出,最后利用SAS即可證出結(jié)論;
②根據(jù)題意可得,若與全等,則,根據(jù)“路程÷速度=時(shí)間”計(jì)算出點(diǎn)P的運(yùn)動時(shí)間,即為點(diǎn)Q運(yùn)動的時(shí)間,然后即可求出點(diǎn)Q的速度;
(2)設(shè)經(jīng)過秒后點(diǎn)與點(diǎn)第一次相遇,根據(jù)題意可得點(diǎn)與點(diǎn)第一次相遇時(shí),點(diǎn)Q比點(diǎn)P多走AB+AC=20厘米,列出方程,即可求出相遇時(shí)間,從而求出點(diǎn)P運(yùn)動的路程,從而判斷出結(jié)論.
解:(1)①∵秒,
∴厘米,
∵厘米,點(diǎn)為的中點(diǎn),
∴厘米.
又∵厘米,
∴厘米,
∴.
又∵,
∴,
在△BPD和△CQP中
∴.
②∵,
∴,
又∵與全等,
,
則,
∴點(diǎn),點(diǎn)運(yùn)動的時(shí)間秒,
∴厘米/秒.
(2)設(shè)經(jīng)過秒后點(diǎn)與點(diǎn)第一次相遇,
∵
∴點(diǎn)與點(diǎn)第一次相遇時(shí),點(diǎn)Q比點(diǎn)P多走AB+AC=20厘米
∴,
解得秒.
∴點(diǎn)共運(yùn)動了厘米.
∵,
∴點(diǎn)、點(diǎn)在邊上相遇,
∴經(jīng)過秒,點(diǎn)與點(diǎn)第一次在邊上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰△ABC中,∠BAC=90°,BC=4,P為BC上一動點(diǎn),∠MPN=45°,PM、PN分別與AB、AC交于點(diǎn)E、F,且PM⊥AB,BE=x.
(1)若P點(diǎn)在BC上運(yùn)動,求四邊形AEPF的面積(用x的代數(shù)式表示)并寫出x的取值范圍
(2)當(dāng)點(diǎn)P在BC上運(yùn)動時(shí),△EPF能否為直角三角形,若能,請寫出此時(shí)x的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①如果兩個(gè)三角形全等,那么這兩個(gè)三角形一定成軸對稱;②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對應(yīng);③若,則;④兩個(gè)無理數(shù)的和一定為無理數(shù);⑤精確到十分位;⑥如果一個(gè)數(shù)的算術(shù)平方根等于它本身,那么這個(gè)數(shù)是0.其中正確的說法有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)在的內(nèi)部,,在、上分別取點(diǎn)、,使的周長最短,則周長的最小值為( )
A.4B.8C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC
(1)填空:如圖1,∠B= °,∠C= °;
(2)如圖2,若M為線段BC上的點(diǎn),過M作MH⊥AD,交AD的延長線于點(diǎn)H,分別交直線AB、AC與點(diǎn)N、E.
①求證:△ANE是等腰三角形;
②線段BN、CE、CD之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一把三角尺放在邊長為2的正方形ABCD上(正方形四個(gè)內(nèi)角為90°,四邊都相等),并使它的直角頂點(diǎn)P在對角線AC上滑動,直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC交于點(diǎn)Q。
探究:(1)當(dāng)點(diǎn)Q在邊CD 上時(shí),線段PQ 與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD 上時(shí),如果四邊形 PBCQ 的面積為1,求AP長度;
(3)當(dāng)點(diǎn)P在線段AC 上滑動時(shí),△PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的AP的長;如果不可能,試說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程①,②,③,④(為實(shí)數(shù)),⑤,⑥其中一定是一元二次方程的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過40,每件提成4元;若當(dāng)日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請利用所學(xué)的統(tǒng)計(jì)知識幫他選擇,井說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com