【題目】如圖,四邊形ABCD內(nèi)接于圓O ,ADBC的延長(zhǎng)線相交于點(diǎn)E,ABDC的延長(zhǎng)線相交于點(diǎn)F.

(1)若∠E=500, F=400,求∠A的度數(shù).

(2)探究∠E、∠F、∠A的關(guān)系并證明.

【答案】145° ;(2)∠E+F+2A=180 °

【解析】

1)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),圓內(nèi)接四邊形的一個(gè)外角等于與它的內(nèi)對(duì)角,和三角形外角的性質(zhì)列式求解即可;

2)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),圓內(nèi)接四邊形的一個(gè)外角等于與它的內(nèi)對(duì)角,和三角形外角的性質(zhì)列式化簡(jiǎn)求解即可;

1)∵∠CDEADF的外角;

∴∠CDE=A+F

∵∠F=40°,

∴∠CDE=A+40°

∵∠CDE=ABE,

∴∠ABE=A+40°,

同理可證:∠ADF=A+E

∵∠E=50°,

∴∠ADF=A+50°,

∵∠ABE+ADF=180°,

∴∠A+40°+A+50°=180°.

2A=180 °-90°=90°

∴∠A=45°.

2)∠E+F+2A=180 °理由如下:

∵∠CDEADF的外角;

∴∠CDE=A+F,

∵∠CDE=ABE,

∴∠ABE=A+F,

同理可證:∠ADF=A+E,

∵∠ABE+ADF=180°

∴∠A+F+A+E=180°.

∴∠E+F+2A=180 °

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速60千米/時(shí),道路的AB段為監(jiān)測(cè)區(qū),監(jiān)測(cè)點(diǎn)P到AB的距離PH為50米(如圖).已知點(diǎn)P在點(diǎn)A的北偏東45°方向上,且在點(diǎn)B的北偏西60°方向上,點(diǎn)B在點(diǎn)A的北偏東75°方向上,那么車輛通過AB段的時(shí)間在多少秒以內(nèi),可認(rèn)定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對(duì)教室采用熏法進(jìn)行消毒,已知藥物燃燒時(shí).室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時(shí)間x(分鐘)成正比例;藥物燃盡后,yx成反比例(如圖所示)已知藥物點(diǎn)燃后6分鐘燃盡,此時(shí)室內(nèi)每立方米空氣中含藥量為15毫克.

1)分別求出這兩個(gè)函數(shù)的表達(dá)式:

2)研究表明,當(dāng)空氣中每立方米的含藥量低于3毫克時(shí)對(duì)人體沒有危害,那么此次消毒后經(jīng)過多長(zhǎng)時(shí)間學(xué)生才可以安全進(jìn)入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,點(diǎn)PBC邊上一點(diǎn),設(shè)BPxAP2y,已知yx的二次函數(shù)的一部分,其圖象如圖2,點(diǎn)Q2,12)是圖象上的最低點(diǎn),且圖象與y軸交于(016).

1)求y關(guān)于x的函數(shù)解析式;

2)當(dāng)△ABP為直角三角形時(shí),BP的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)關(guān)系式中,二次函數(shù)的個(gè)數(shù)有(

1y=3(x1)2+1 2y=3S=32t2 4y x42x21 5y3x(2x) 3x2 (6) y=mx2+x

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從一副完整的撲克牌中任意抽取1,下列事件與抽到“A”的概率相同的是(

A.抽到大王B.抽到“Q”C.抽到小王D.抽到紅桃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小劉同學(xué)在課外活動(dòng)中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?/span>A點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不變)時(shí),地面B處的重物(大小忽略不計(jì))被吊至B′處,緊繃著的吊纜A′B′=ABAB垂直地面O′B于點(diǎn)BA′B′垂直地面O′B于點(diǎn)C,吊臂長(zhǎng)度OA′=OA=10米,且cosA=,sinA′=

(1)求此重物在水平方向移動(dòng)的距離BC

(2)求此重物在豎直方向移動(dòng)的距離B′C.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點(diǎn)AB坐標(biāo)分別是(6,0),(0,4).動(dòng)點(diǎn)P在直線OD解析式為yx上運(yùn)動(dòng).

1)若反比例函數(shù)y圖象過C點(diǎn),則m_____

2)證明:ODAB;

3)當(dāng)以點(diǎn)P為圓心、PB長(zhǎng)為半徑的⊙P隨點(diǎn)P運(yùn)動(dòng)⊙PABCO的邊所在直線相切時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly3x3分別與x軸,y軸交于點(diǎn)A,點(diǎn)B,拋物線yax22ax+a4過點(diǎn)B

1)求拋物線的解析式;

2)點(diǎn)C是第四象限拋物線上一動(dòng)點(diǎn),連接ACBC

①當(dāng)ABC的面積最大時(shí),求點(diǎn)C的坐標(biāo)及ABC面積的最大值;

②在①的條件下,將直線l繞著點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到直線l',l'與線段BC交于點(diǎn)D,設(shè)點(diǎn)B,點(diǎn)Cl'的距離分別為d1d2,當(dāng)d1+d2最大時(shí),求直線l旋轉(zhuǎn)的角度.

查看答案和解析>>

同步練習(xí)冊(cè)答案