【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i12,頂部A處的高AC4m,B、C在同一水平地面上.

1)求斜坡AB的水平寬度BC;

2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE25m,EF2m,將該貨柜沿斜坡向上運送,當(dāng)BF35m時,求點D離地面的高.(結(jié)果保留根號)

【答案】1BC=8m;(22m

【解析】

1)根據(jù)坡度定義直接解答即可;

2)作DSBC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據(jù),得到GH1m,利用勾股定理求出DH的長,然后求出BH5m,進(jìn)而求出HS,然后得到DS

解:(1)∵坡度為i12AC4m

BC4×28m

2)作DSBC,垂足為S,且與AB相交于H

∵∠DGH=∠BSH,∠DHG=∠BHS

∴∠GDH=∠SBH,

∵矩形DEFG為長方體

DGEF2m,

GH1m,

DHmBHBF+FH3.5+2.51)=5m

設(shè)HSxm,則BS2xm,

x+(2x)=5,

xm

DS+m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是( 。

A. 若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. 當(dāng)k>0時,yx的增大而減小

C. 過圖象上任一點Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(1,0),C(0,3)兩點,點B是拋物線與x軸的另一個交點,點D與點C關(guān)于拋物線對稱軸對稱,作直線AD.點P在拋物線上,過點PPEx軸,垂足為點E,交直線AD于點Q,過點PPGAD,垂足為點G,連接AP.設(shè)點P的橫坐標(biāo)為m,PQ的長度為d

(1)求拋物線的解析式;

(2)求點D的坐標(biāo)及直線AD的解析式;

(3)當(dāng)點P在直線AD上方時,求d關(guān)于m的函數(shù)關(guān)系式,并求出d的最大值;

(4)當(dāng)點P在直線AD上方時,若PQ將△APG分成面積相等的兩部分,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 中,AB=AC, BAC 60°,將線段 AB 繞點 A逆時針旋轉(zhuǎn) 60°得到點 D, E 與點 D 關(guān)于直線 BC 對稱,連接 CD,CE,DE

1)依題意補全圖形;

2)判斷△CDE 的形狀,并證明;

3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準(zhǔn)確位置,并畫圖證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O過ABCD的三頂點A、D、C,邊AB與O相切于點A,邊BC與O相交于點H,射線AD交邊CD于點E,交O于點F,點P在射線AO上,且PCD=2DAF.

(1)求證:ABH是等腰三角形;

(2)求證:直線PC是O的切線;

(3)若AB=2,AD=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與△ABCAB、AC的延長線及BC邊相切,且∠ACB90°,∠A,∠B,∠C所對的邊長依次為3,4,5,則⊙O的半徑是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運動員各參加10場比賽,各場得分情況如圖,下列四個結(jié)論中,正確的是( 。

A. 甲運動員得分的平均數(shù)小于乙運動員得分的平均數(shù)B. 甲運動員得分的中位數(shù)小于乙運動員得分的中位數(shù)

C. 甲運動員得分的最小值大于乙運動員得分的最小值D. 甲運動員得分的方差大于乙運動員得分的方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1)本次調(diào)查中C類女生有______名,D類男生有______名;將上面的條形統(tǒng)計圖補充完整;

2)計算扇形統(tǒng)計圖中D所占的圓心角是______;

3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為弓形AB的弦,AB2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內(nèi)心,當(dāng)點P從點A向點B運動時,點I移動的路徑長為_____

查看答案和解析>>

同步練習(xí)冊答案