【題目】x,y定義一種新運算F,規(guī)定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均為非零常數(shù)).例如:F(1,1)=2m+2n,F(xiàn)(﹣1,0)=3m.

(1)已知F(1,﹣1)=﹣8,F(xiàn)(1,2)=13.

①求m,n的值;

②關(guān)于a的不等式組,求a的取值范圍;

(2)當(dāng)x2≠y2時,F(x,y)=F(y,x)對任意有理數(shù)x,y都成立,請直接寫出m,n滿足的關(guān)系式.

【答案】(1)①m=3,n=5;②不等式組的無解;(2)n=-3m

【解析】

(1)①根據(jù)題目定義的運算列出方程組,即可求出的值.

②根據(jù)定義的新運算列出不等式組,解不等式組即可.

(2)根據(jù)定義的新運算列出的表達(dá)式,對式子進(jìn)行化簡即可求出

m,n滿足的關(guān)系式.

(1)①根據(jù)題意得:

解得:

②根據(jù)題意得:

解不等式①得:

解不等式②得:

故原不等式組的無解;

(2)由

整理得:

∵當(dāng) 時,對任意有理數(shù) 都成立,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C,E,F,B在一條直線上,點A,DBC異側(cè),ABCD,AE=DF,∠A=D

1)求證:AB=CD;

2)若AB=CF,∠B=50°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC和∠ACB的角平分線相交于點O,DE經(jīng)過O點,且DE//BC

⑴請指出圖中的兩個等腰三角形.

⑵請選擇⑴中的一個三角形,說明它是等腰三角形的理由.

⑶如果△ABC的周長是26,△ADE的周長是18,請求出BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點PAD延長線上一點,連接AC、CP,F(xiàn)AB邊上一點,滿足CFCP,過點BBMCF,分別交AC、CF于點M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對進(jìn)行循環(huán)往復(fù)的軸對稱變換,若原來點A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,已知點A(﹣1,0),點C(0,2)

(1)求拋物線的函數(shù)解析式;

(2)若D是拋物線位于第一象限上的動點,求△BCD面積的最大值及此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實效性,軍寧中學(xué)開展以我最喜愛的傳統(tǒng)文化種類為主題的調(diào)查活動,圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過計算補全條形統(tǒng)計圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請你估計該中學(xué)最喜愛國畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,將平行四邊形ABCD沿著EF對折.設(shè)∠1的度數(shù)為,則∠C=______.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交AB,CD于點E,F(xiàn),連接AF,CE,如果∠BCE=26°,則∠CAF=_____

查看答案和解析>>

同步練習(xí)冊答案