【題目】下列條件:(1)A=25°,∠B=65°(2)3A=2B=C;(3)A=5B;(4)2A=3B=4C中,其中能確定ABC是直角三角形的條件有( )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

根據(jù)三角形的內(nèi)角和定理求出各小題中最大的角的度數(shù)即可進(jìn)行判斷.

1)∵∠A=25°,∠B=65°

∴∠A+B=25°+65°=90°,

又∵∠A+B+C=180°,

∴∠C=180°-(∠A+B=180°-90°=90°,

ABC是直角三角形;

2)∵3A=2B=C,

∴∠A=C,∠B=C,

∵∠A+B+C=180°

C+C+C=C=180°

∴∠C≠90°

ABC不是直角三角形;

3)∵∠A=5B

∴無法計算內(nèi)角的度數(shù),

因此無法判定ABC的形狀;

4)∵2A=3B=4C,

∴∠A=2C,∠B=C,

又∵∠A+B+C=180°,

2C+C+C=C=180°,

∴∠C=

ABC不是直角三角形.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一中學(xué)有學(xué)生3000名,2016年母親節(jié),曉彤為了調(diào)查本校大約有多少學(xué)生知道自己母親的生日,隨機(jī)調(diào)查了200名學(xué)生,有20名同學(xué)不知道自己母親生日,關(guān)于這個數(shù)據(jù)收集和處理的問題,下列說法錯誤的是(
A.個體是該校每一位學(xué)生
B.本校約有300名學(xué)生不知道自己母親的生日
C.調(diào)查的方式是抽樣調(diào)查
D.樣本是隨機(jī)調(diào)查的200名學(xué)生是否知道自己母親的生日

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°.點(diǎn)D是AB中點(diǎn),點(diǎn)E為邊AC上一點(diǎn),連接CD,DE,以DE為邊在DE的左側(cè)作等邊三角形DEF,連接BF.

(1)△BCD的形狀為
(2)隨著點(diǎn)E位置的變化,∠DBF的度數(shù)是否變化?并結(jié)合圖說明你的理由;
(3)當(dāng)點(diǎn)F落在邊AC上時,若AC=6,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,在數(shù)軸上,|a|表示數(shù)a到原點(diǎn)的距離,這是絕對值的幾 何意義,進(jìn)一步地,數(shù)軸上兩個點(diǎn)A、B,分別用a b 表示,那么A、B兩點(diǎn)之間的距離為AB|ab|利用此結(jié)論,回答以下問題:

(1)數(shù)軸上表示3 7 的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣3 和﹣7 的兩 點(diǎn)之間的距離是 ,數(shù)軸上表示2 和﹣3 的兩點(diǎn)之間的距離是 ;

(2)數(shù)軸上表示x和﹣5 的兩點(diǎn)AB之間的距離是 ,如果|AB|3,那 x的值為

(3)當(dāng)代數(shù)式|x1|+|x3|取最小值時,相應(yīng)的x的取值范圍是多少?最小值是多少?

(4)已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)是a,點(diǎn)B在數(shù)軸上對應(yīng)的數(shù)是b,且|a+4|+(b1)20,設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)是x,當(dāng)|PA||PB|2時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD、BC的延長線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市上網(wǎng)有兩種收費(fèi)方案,用戶可任選其一,A為計時制--1時;B為包月制--80月,此外每種上網(wǎng)方式都附加通訊費(fèi)時.

某用戶每月上網(wǎng)40小時,選哪種方式比較合適?

某用戶每月有100元錢用于上網(wǎng),選哪種方式比較合算?

請你設(shè)計一個方案,使用戶能合理地選擇上網(wǎng)方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題3tan30°﹣|﹣2|+ +(﹣1)2017;
(1)計算:3tan30°﹣|﹣2|+ +(﹣1)2017
(2)解方程: = ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結(jié)論中,正確的有( )①∠1=3;②如果∠2=30°則有ACDE;③如果∠2=30°,則有BCAD;④如果∠2=30°,必有∠4=C

A.①②③B.①②④C.③④D.①②③④

查看答案和解析>>

同步練習(xí)冊答案