【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,且AO=CO,AB∥CD.
(1)求證:AB=CD;
(2)若∠OAB=∠OBA,求證:四邊形ABCD是矩形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)AB∥CD,即可證明∠OAB=∠OCD,再結(jié)合題意證明△OAB≌△OCD,即可證明AB=CD.
(2)在(1)的基礎(chǔ)上證明四邊形ABCD是平行四邊形,再結(jié)合對角線即可證明四邊形ABCD是矩形.
(1)證明:∵AB∥CD,
∴∠OAB=∠OCD,
在△OAB和△OCD中,
,
∴△OAB≌△OCD,
∴AB=CD.
(2)證明:∵△OAB≌△OCD,
∴AB=CD,
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∴OA=AC,OB=BD,
∵∠OAB=∠OBA,
∴OA=OB,
∴AC=BD,
∴平行四邊形ABCD是矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸的正半軸上,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)若將菱形沿軸正方向平移,當(dāng)菱形的另一個(gè)頂點(diǎn)恰好落在函數(shù)的圖象上時(shí),求菱形平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】襄陽市精準(zhǔn)扶貧工作已進(jìn)入攻堅(jiān)階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍(lán)莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴(kuò)大銷量,采取了降價(jià)措施,以后每天比前一天多賣出4千克.第x天的售價(jià)為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價(jià)為32元/千克,第26天的售價(jià)為25元/千克.已知種植銷售藍(lán)莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍(lán)莓第幾天時(shí),當(dāng)天的利潤最大?最大利潤是多少?
(3)在銷售藍(lán)莓的30天中,當(dāng)天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價(jià)為2元的小商品,在市場營銷中發(fā)現(xiàn)日銷售單價(jià)x元與日銷售量y件有如下關(guān)系:
x | 3 | 5 | 9 | 11 |
y | 18 | 14 | 6 | 2 |
(1)預(yù)測此商品日銷售單價(jià)為11.5元時(shí)的日銷售量;
(2)設(shè)經(jīng)營此商品日銷售利潤(不考慮其他因素)為P元,根據(jù)銷售規(guī)律,試求日銷售利潤P元與銷售單價(jià)x元之間的函數(shù)關(guān)系式,問日銷售利潤P是否存在最大值或最小值?若有,試求出;若無,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社的一則廣告如下:
甲公司想分批組織員工到延安紅色旅游學(xué)習(xí).
(1)如果第一批組織40人去學(xué)習(xí),則公司應(yīng)向旅行社交費(fèi) 元;
(2)如果公司計(jì)劃用29250元組織第一批員工去學(xué)習(xí),問這次旅游學(xué)習(xí)應(yīng)安排多少人參加?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AB中點(diǎn),過點(diǎn)D作DF//BC交AC于點(diǎn)E,且DE=EF,連接AF,CF,CD.
(1)求證:四邊形ADCF為平行四邊形;
(2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意兩點(diǎn)P1(x1,y1),P2(x2,y2),如果,則稱P1與P2互為“d-距點(diǎn)”.例如:點(diǎn)P1(3,6),點(diǎn)P2(1,7),由d=|3-1|+|6-7|=3,可得點(diǎn)P1與P2互為“3-距點(diǎn)”.
(1)在點(diǎn)D(-2,-2),E(5,-1),F(0,4)中,原點(diǎn)O的“4-距點(diǎn)"是____(填字母);
(2)已知點(diǎn)A(2,1),點(diǎn)B(0,b),過點(diǎn)B作平行于x軸的直線l.
①當(dāng)b=3時(shí),直線l上點(diǎn)A的“2-距點(diǎn)"的坐標(biāo)為_______;
②若直線l上存在點(diǎn)A的2-距點(diǎn)”,求b的取值范圍:
(3)已知點(diǎn)M(1,2),N(3,2),C(m,0),⊙C的半徑為,若在線段MN上存在點(diǎn)P,在⊙C上存在點(diǎn)Q,使得點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格的每個(gè)小正方形邊長均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).已知和的頂點(diǎn)都在格點(diǎn)上,線段的中點(diǎn)為.
(1)以點(diǎn)為旋轉(zhuǎn)中心,分別畫出把順時(shí)針旋轉(zhuǎn),后的,;
(2)利用(1)變換后所形成的圖案,解答下列問題:
①直接寫出四邊形,四邊形的形狀;
②直接寫出的值;
③設(shè)的三邊,,,請證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育局為了了解初一學(xué)生參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分初一學(xué)生參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)這次共抽取 名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查,補(bǔ)全條形圖;
(2) ,該扇形所對圓心角的度數(shù)為 ;
(3)如果該市有初一學(xué)生人,請你估計(jì)“活動(dòng)時(shí)間不少于天”的大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com