已知:如圖1,圖形①滿(mǎn)足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B=______°,圖形②中∠E=______°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱(chēng)為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱(chēng)為“飛鏢一號(hào)”.
①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,需要這種紙片______張;
②小明若用若干張“風(fēng)箏一號(hào)”紙片和“飛鏢一號(hào)”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請(qǐng)你在圖3中畫(huà)出拼接線(xiàn)并保留畫(huà)圖痕跡.(本題中均為無(wú)重疊、無(wú)縫隙拼接)
(1)連接AM,如圖所示:
∵AD=AB,DM=BM,AM為公共邊,
∴△ADM≌△ABM,
∴∠D=∠B,
又因?yàn)樗倪呅蜛BMD的內(nèi)角和等于360°,∠DAB=72°,∠DMB=144°,
∴∠B=
360°-72°-144°
2
=72°;
在圖2中,因?yàn)樗倪呅蜛BCD為菱形,所以ABCD,
∴∠A+∠ADC=∠A+∠ADM+∠CEF=180°,∠A=72°,∠ADM=72°,
∴∠CEF=180°-72°-72°=36°;

(2)①用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,
得到“風(fēng)箏一號(hào)”紙片的點(diǎn)A與正十邊形的中心重合,又∠A=72°,
則需要這種紙片的數(shù)量=
360°
72°
=5;
②根據(jù)題意可知:“風(fēng)箏一號(hào)”紙片用兩張和“飛鏢一號(hào)”紙片用一張,
畫(huà)出拼接線(xiàn)如圖所示:
故答案為:(1)72°;36°;(2)①、5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,菱形ABCD的兩條對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,且AC=8cm,BD=6cm,求菱形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,DF是平行四邊形ABCD中∠ADC的平分線(xiàn),EFAD交DC于點(diǎn)E.
(1)四邊形AFED是菱形嗎?請(qǐng)說(shuō)明理由;
(2)如果∠A=60°,AD=5,求四邊形AFED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

菱形的面積為50cm2,一個(gè)內(nèi)角為30°,則其邊長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若菱形的對(duì)角線(xiàn)長(zhǎng)分別是6cm、8cm,則其周長(zhǎng)是______,面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,過(guò)四邊形ABCD的頂點(diǎn)A、C、B、D分別作BD、AC的平行線(xiàn)圍成四邊形EFGH,如果EFGH成菱形,那么四邊形ABCD必定是( 。
A.菱形B.平行四邊形
C.矩形D.對(duì)角線(xiàn)相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,且AC=8,BD=6,過(guò)點(diǎn)O作OH丄AB,垂足為H,則點(diǎn)0到邊AB的距離OH=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,依次連結(jié)第一個(gè)矩形各邊的中點(diǎn)得到第一個(gè)菱形,再依次連結(jié)所得菱形各邊的中點(diǎn)得到第二個(gè)矩形,
按照此方法繼續(xù)下去.已知第一個(gè)矩形的面積為2,則第2013個(gè)菱形的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,在直角梯形ABCD中,∠B=90°,DCAB,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),由B→C→D→A沿邊運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,若關(guān)于y與x的函數(shù)圖象如圖②,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案