【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標(biāo):_____;點B的坐標(biāo):_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當(dāng)t為何值時,△NOM≌△AOB,求出此時點M的坐標(biāo);
(4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標(biāo).
【答案】(1)(4,0),(0,2);(2);(3)M(2,0);(4)G(0, ).
【解析】試題分析:(1)在中,令別令y=0和x=0,則可求得A、B的坐標(biāo);
(2)利用t可表示出OM,則可表示出S,注意分M在y軸右側(cè)和左側(cè)兩種情況;
(3)由全等三角形的性質(zhì)可得OM=OB=2,則可求得M點的坐標(biāo);
(4)由折疊的性質(zhì)可知MG平分∠OMN,利用角平分線的性質(zhì)定理可得到,則可求得OG的長,可求得G點坐標(biāo).
試題解析:解:(1)在中,令y=0,得x=4,令x=0可,y=2,∴A(4,0),B(0,2);
(2)由題題意可知AM=t.
①當(dāng)點M在y軸右邊,即0<t≤4時,OM=OA﹣AM=4﹣t.
∵N(0,4),∴ON=4,∴S=OMON=×4×(4﹣t)=8﹣2t;
②當(dāng)點M在y軸左邊,即t>4時,則OM=AM﹣OA=t﹣4,
∴S=×4×(t﹣4)=2t﹣8;
綜上所述: ;
(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);
(4)∵OM=2,ON=4,∴MN==.
∵△MGN沿MG折疊,∴∠NMG=∠OMG,∴ ,且NG=ON﹣OG,
∴,解得OG=,∴G(0, ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象提供的信息,解決下列問題:
(1)A,B兩城相距 千米;
(2)分別求甲、乙兩車離開A城的距離y與x的關(guān)系式.
(3)求乙車出發(fā)后幾小時追上甲車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點、.是線段上一動點(點不與、重合),過點作軸的垂線交拋物線于點,交線段于點.過點作,垂足為點.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求該拋物線的解析式;
(2)試求線段的長關(guān)于點的橫坐標(biāo)的函數(shù)解析式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表三行數(shù)的規(guī)律,回答下列問題:
第列 | 第列 | 第列 | 第列 | 第列 | 第列 | ... | |
第行 | ... | ||||||
第行 | ... | ||||||
第行 | ... |
(1)第行的第四列數(shù)______________,第行的第六列數(shù)______________;
(2)若第行的某一列的數(shù)為,則第
(3)已知第列的三個數(shù)的和為,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在邊AB上,且AD=3,DB=2,過點D作DE∥BC,交邊AC于點E,將△ADE沿著DE折疊,得△MDE,與邊BC分別交于點F,G.若△ABC的面積為15,則△MFG的面積是( )
A. 0.5B. 0.6C. 0.8D. 1.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com