【題目】下列語句中,不是命題的是( )
A.若兩角之和為90,則這兩個角互補(bǔ)
B.同角的余角相等
C.作線段的垂直平分線
D.相等的角是對頂角

【答案】C
【解析】命題的定義:判斷某一件事情的句子叫做命題。
A.若兩角之和為90,則這兩個角互補(bǔ),B.同角的余角相等,D.相等的角是對頂角,均為命題,不符題意;
C.作線段的垂直平分線,不是命題,本選項(xiàng)符合題意。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題與定理的相關(guān)知識可以得到問題的答案,需要掌握我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經(jīng)過證明被確認(rèn)正確的命題叫做定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為( 。


A.6
B.7
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=ax+b與反比例函數(shù)(x>0)的圖象交于A(1,4),B(4,n)兩點(diǎn),與x軸、y軸分別交于C、D兩點(diǎn).

(1)m= ,n= ;若M(),N()是反比例函數(shù)圖象上兩點(diǎn),且0<,則 (填“<”或“=”或“>”);

(2)若線段CD上的點(diǎn)P到x軸、y軸的距離相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個頂點(diǎn)都在小正方形的頂點(diǎn)上).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)寫出點(diǎn)A和對稱點(diǎn)A1的坐標(biāo);
(3)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x、y均為正整數(shù),且2x2y=128,則x+y的值為(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,D為AB中點(diǎn),設(shè)點(diǎn)P在線段BC上以3cm/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.

(1)若Q點(diǎn)運(yùn)動的速度與P點(diǎn)相同,且點(diǎn)P,Q同時出發(fā),經(jīng)過1秒鐘后△BPD與△CQP是否全等,并說明理由;
(2)若點(diǎn)P,Q同時出發(fā),但運(yùn)動的速度不相同,當(dāng)Q點(diǎn)的運(yùn)動速度為多少時,能在運(yùn)動過程中有△BPD與△CQP全等?
(3)若點(diǎn)Q以(2)中的速度從點(diǎn)C出發(fā),點(diǎn)P以原來的速度從點(diǎn)B同時出發(fā),都是逆時針沿△ABC的三邊上運(yùn)動,經(jīng)過多少時間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,AB為直徑,D.E為圓上兩點(diǎn),C為圓外一點(diǎn),且E+C=90°.

(1)求證:BC為O的切線.

(2)若sinA=,BC=6,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓的半徑R、r分別為方程x2-5x+6=0的兩根,兩圓的圓心距為1,兩圓的位置關(guān)系是( )
A.外離
B.內(nèi)切
C.相交
D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:計(jì)算下列各題
(1)計(jì)算:| |+2
(2)計(jì)算: + + ;
(3)解方程組: ;
(4)解不等式: >1﹣
(5)根據(jù)題意填空

∵∠B=∠BCD(已知)
∴AB∥CD(
∵∠BCD=∠CGF(已知)
(

查看答案和解析>>

同步練習(xí)冊答案