【題目】如圖1,所對(duì)邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.

(1)若,判斷是否為奇異三角形,并說(shuō)明理由;

(2)若,,求的長(zhǎng);

(3)如圖2,在奇異三角形中,,點(diǎn)邊上的中點(diǎn),連結(jié),分割成2個(gè)三角形,其中是奇異三角形,是以為底的等腰三角形,求的長(zhǎng).

【答案】(1)是,理由見(jiàn)解析;(2);(3)

【解析】

1)根據(jù)奇異三角形的概念直接進(jìn)行判斷即可.

2)根據(jù)勾股定理以及奇異三角形的概念直接列式進(jìn)行計(jì)算即可.

3)根據(jù)ABC是奇異三角形,且b=2,得到,由題知:AD=CD=1,且BC=BD=a,根據(jù)ADB是奇異三角形,則,分別求解即可.

1)∵, ,

,

ABC是奇異三角形.

2)∵∠C=90°,

,

解得:

3)∵△ABC是奇異三角形,且b=2

由題知:AD=CD=1BC=BD=a

∵△ADB是奇異三角形,且

當(dāng)時(shí),時(shí),與矛盾,不合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)根據(jù)圖示的對(duì)話解答下列問(wèn)題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生課外閱讀,開(kāi)闊視野,某校開(kāi)展了“書(shū)香校園,從我做起”的主題活動(dòng).學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:

課外閱讀時(shí)間(單位:小時(shí))

頻數(shù)(人數(shù))

頻率

0﹤t≤2

2

0.04

2﹤t≤4

3

0.06

4﹤t≤6

15

0.30

6﹤t≤8

a

0.50

t﹥8

5

b


請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)頻數(shù)分布表中的a=b=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)學(xué)校將每周課外閱讀時(shí)間在8小時(shí)以上的學(xué)生評(píng)為“閱讀之星”,請(qǐng)你估計(jì)該校2000名學(xué)生中評(píng)為“閱讀之星”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形中,在邊上取兩點(diǎn)、,使.若,,, 則以,,為邊長(zhǎng)的三角形的形狀為(

A.銳角三角形B.直角三角形C.鈍角三角形D.,,的值而定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:,

(1)當(dāng)>0時(shí),判斷0的關(guān)系,并說(shuō)明理由;

(2)設(shè)

①當(dāng)時(shí),求的值;

②若是整數(shù),求的正整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列一組圖形中的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),……,按此規(guī)律第5個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( )

A. 31 B. 46 C. 51 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC、BD相交于點(diǎn)OEAB的中點(diǎn),且DEABAC6,則菱形ABCD的面積是(  )

A. 18 B. 18 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,請(qǐng)結(jié)合圖,探索這兩個(gè)角之間的關(guān)系,并說(shuō)明理由.

(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;

證明:

(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是

證明:

(3)經(jīng)過(guò)上述證明,我們可得出結(jié)論,如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角 ;

(4)若這兩個(gè)角的兩邊分別平行,且一個(gè)角比另一個(gè)角的3倍少60°,則這兩個(gè)角分別是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、C是⊙A上的兩點(diǎn),AB的垂直平分線與⊙A交于E、F兩點(diǎn),與線段AC交于D點(diǎn).若∠BFC=20°,則∠DBC=( )

A.30°
B.29°
C.28°
D.20°

查看答案和解析>>

同步練習(xí)冊(cè)答案