【題目】(1)化簡:

(2)計算:;

(3)化簡:;

(4)已知求代數(shù)式的值;

(5)已知求代數(shù)式的值.

【答案】12xy-y2;(21;(3)-11a6;(46;(513.

【解析】

1)原式第一項利用單項式乘以多項式的運(yùn)算法則進(jìn)行計算,第二項運(yùn)用完全平方公式進(jìn)行計算,去括號合并同類項即可得到結(jié)果;

2)原式第二項2010變成2009+1,2008變成2009-1,利用平方差公式化簡,去括號合并即可得到結(jié)果;

3)原式先利用積的乘方和冪的乘方運(yùn)算法則進(jìn)行計算,合并同類項即可得到結(jié)果;

4)先根據(jù)整式的混合運(yùn)算順序和運(yùn)算法則進(jìn)行化簡,再將整體代入即可;

5)先根據(jù)多項式除以單項式的法則計算原式,再將n的值代入計算即可得結(jié)果.

1

=

=;

2

=

=

=1

3

=

=;

4

=

=

當(dāng)時,

原式=3+9

=-3+9

=6

5=2n2-2n+1

當(dāng)n=-2時,

原式=

=8+4+1

=13.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)指出函數(shù)圖象的開口方向是 ,對稱軸是 ,頂點(diǎn)坐標(biāo)為 ;

(2)當(dāng)x 時,yx的增大而減。

(3)怎樣移動拋物線就可以得到拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法合理的是:(

A. 打開電視,正在播放新聞節(jié)日是必然事件

B. 拋一枚硬幣,正面朝上的概率為表示每拋兩次就有一次正面朝上

C. 拋擲一枚均勻的骰子,出現(xiàn)點(diǎn)數(shù)6的概率是表示隨著拋擲次數(shù)的增加出現(xiàn)點(diǎn)數(shù)6”這一事件發(fā)生的頻率穩(wěn)定在附近

D. 為了解某品牌火腿的質(zhì)量,選擇全面檢測

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點(diǎn)在反比例函數(shù)的圖象上,頂點(diǎn)、分別在軸、軸的正半軸上,再在其右側(cè)作正方形,頂點(diǎn)在反比例函數(shù)的圖象上,頂點(diǎn)軸的正半軸上,則點(diǎn)的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC被平行光線照射,CD⊥AB于D,AB在投影面上.

(1)指出圖中AC的投影是什么?CD與BC的投影呢?

(2)探究:當(dāng)△ABC為直角三角形(∠ACB=90°)時,易得AC2=AD·AB,此時有如下結(jié)論:直角三角形一直角邊的平方等于它在斜邊射影與斜邊的乘積,這一結(jié)論我們稱為射影定理.通過上述結(jié)論的推理,請證明以下兩個結(jié)論.

①BC2=BD·AB;②CD2=AD·BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,CDABE,CDAB,DA、BC延長線交于F

1)若AC12,∠ABC30°,求DE的長;

2)若BC2AC,求證:DAFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)坐標(biāo)分別為A1-4),B3,-3),C1,-1).

1)將ABC先向上平移5個單位,再向左平移3個單位,畫出平移后得到的A1B1C1;

2)寫出A1B1C1各頂點(diǎn)的坐標(biāo);

3)若ABC內(nèi)有一點(diǎn)Pa,b),請寫出平移后得到的對應(yīng)點(diǎn)P1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案