【題目】(10分)國慶期間,為了滿足百姓的消費需求,某商店計劃用170000元購進一批家電,這批家電的進價和售價如表:
若在現(xiàn)有資金允許的范圍內,購買表中三類家電共100臺,其中彩電臺數(shù)是冰箱臺數(shù)的2倍,設該商店購買冰箱x臺.
(1)商店至多可以購買冰箱多少臺?
(2)購買冰箱多少臺時,能使商店銷售完這批家電后獲得的利潤最大?最大利潤為多少元?
【答案】(1)26;(2)購買冰箱26臺時,能使商店銷售完這批家電后獲得的利潤最大,最大利潤為23000元.
【解析】試題分析:(1)根據(jù)三種家電的總進價小于等于170000元列出關于x的不等式,由x為正整數(shù),即可得到答案;
(2)設商店銷售完這批家電后獲得的利潤為y元,則y=500x+10000,結合(1)中x的取值范圍,利用一次函數(shù)的性質即可解答.
試題解析:(1)根據(jù)題意,得:20002x+1600x+1000(100﹣3x)≤170000,解得: ,∵x為正整數(shù),∴x至多為26.
答:商店至多可以購買冰箱26臺.
(2)設商店銷售完這批家電后獲得的利潤為y元,則y=(2300﹣2000)2x+(1800﹣1600)x+(1100﹣1000)(100﹣3x)=500x+10000,∵k=500>0,∴y隨x的增大而增大,∵且x為正整數(shù),∴當x=26時,y有最大值,最大值為:500×26+10000=23000,
答:購買冰箱26臺時,能使商店銷售完這批家電后獲得的利潤最大,最大利潤為23000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.
【答案】-6
【解析】試題分析:∵點A(x1,y1),B(x2,y2)是雙曲線y=上的點,
∴x1y1=x2y2=-3①,
∵直線y=kx(k<0)與雙曲線y=交于點A(x1,y1),B(x2,y2)兩點,
∴x1=-x2,y1=-y2②,
∴原式=-3x1y1+5x2y2=9-15=-6.
故答案為:-6.
點睛:本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的對稱性,根據(jù)反比例函數(shù)的圖象關于原點對稱得出x1=-x2,y1=-y2是解答此題的關鍵.
【題型】填空題
【結束】
15
【題目】A,B兩地相距180km,新修的高速公路開通后,在A,B兩地間行駛的長途客車平均車速提高了 50%,而從A地到B地的時間縮短了 1h .若設原來的平均車速為xkm/h,則根據(jù)題意可列方程為 _____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在求多邊形的內角和時,多算了一個內角的度數(shù),求得內角和為1 560°,問這個內角是多少度?這個多邊形的邊數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據(jù)記錄可知前三天共生產(chǎn)多少輛;
產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;
該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務,則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…
回答下列三個問題:
(1)驗證:(2×)100= ,2100×()100= ;
(2)通過上述驗證,歸納得出:(ab)n= ; (abc)n= .
(3)請應用上述性質計算:(﹣0.125)2017×22016×42015.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍.了解信息如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元;經(jīng)洽談:甲店每買一副球拍贈一盒乒乓球;乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5盒).問:
(1)當購買乒乓球x盒時,兩種優(yōu)惠辦法各應付款多少元?(用含x的代數(shù)式表示)
(2)如果要購買15盒乒乓球時,請你去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.
當?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:
方案一:將蔬菜全部進行粗加工;
方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥FC,D是AB上一點,DF交AC于點E,DE=FE,分別延長FD和CB交于點G.
(1)求證:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,定點E,F(xiàn)分別在直線AB,CD上,在平行線AB、CD之間有一動點P,滿足0°<∠EPF<180°.
(1)試問∠AEP,∠EPF,∠PFC滿足怎樣的數(shù)量關系?
解:由于點P是平行線AB、CD之間有一動點,因此需要對點P的位置進行分類討論;如圖1,當P點在EF的左側時,∠AEP,∠EPF,∠PFC滿足數(shù)量關系為______________,如圖2,當P點在EF的右側時,∠AEP,∠EPF,∠PFC滿足數(shù)量關系為______________。
(2)如圖3,QE,QF分別平分∠PEB和∠PFD,且點P在EF左側.
①若∠EPF=60°,則∠EQF=_______°.
②猜想∠EPF與∠EQF的數(shù)量關系,并說明理由.
③如圖4,若∠BEQ與∠DFQ的角平分線交于點Q1,∠BEQ1與∠DFQ1的角平分線交于點Q2,∠BEQ2與∠DFQ2的角平分線交于點Q3,此次類推,則∠EPF與∠EQ2018F滿足怎樣的數(shù)量關系?(直接寫出結果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com