【題目】在數(shù)學(xué)課上,甲、乙、丙、丁四位同學(xué)共同研究二次函數(shù)yx22x+cc是常數(shù)).甲發(fā)現(xiàn):該函數(shù)的圖象與x軸的一個(gè)交點(diǎn)是(﹣2,0);乙發(fā)現(xiàn):該函數(shù)的圖象與y軸的交點(diǎn)在(0,﹣4)上方;丙發(fā)現(xiàn):無(wú)論x取任何值所得到的y值總能滿(mǎn)足cy1;丁發(fā)現(xiàn):當(dāng)﹣1x0時(shí),該函數(shù)的圖象在x軸的下方,當(dāng)3x4時(shí),該函數(shù)的圖象在x軸的上方.通過(guò)老師的最后評(píng)判得知這四位同學(xué)中只有一位同學(xué)發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( 。

A. B. C. D.

【答案】A

【解析】

由甲得到yx22x8,由乙得到yx22x4,所以他倆必有一個(gè)錯(cuò)誤,根據(jù)丁的信息函數(shù)與x軸的兩個(gè)交點(diǎn)x1,x3,即可求解;

根據(jù)甲的信息得到c=﹣8,

yx22x8,

x軸的交點(diǎn)為x4,x=﹣2;

根據(jù)乙的信息得到c=﹣4

yx22x4,

x軸的交點(diǎn)為x1+,x1,

根據(jù)丙的信息y=(x12+c1,

函數(shù)有最小值c1

yc1,

故丙正確;

根據(jù)丁的信息得到,函數(shù)與x軸的兩個(gè)交點(diǎn)x>﹣1,x3,

∵只有一個(gè)錯(cuò)誤,甲乙互相矛盾,一定是他倆中一個(gè)錯(cuò)誤,

根據(jù)丁提供的信息,可以斷定甲錯(cuò)誤;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷(xiāo)售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AF,BE是△ABC的中線,AFBE,垂足為點(diǎn)P,設(shè)BCa,ACb,ABc,則a2+b25c2,利用這一性質(zhì)計(jì)算.如圖2,在平行四邊形ABCD中,EF,G分別是AD,BC,CD的中點(diǎn),EBEG于點(diǎn)E,AD8,AB2,則AF__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱,該居民樓的一樓是?/span>5米的小區(qū)超市,超市以上是居民住房.在該樓的前面15米處要蓋一棟高20米的新樓.當(dāng)冬季正午的陽(yáng)光與水平線的夾角為32°時(shí).

1)問(wèn)超市以上的居民住房采光是否有影響,為什么?

2)若要使超市采光不受影響,兩樓應(yīng)相距多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32°≈,cos32°≈,tan32°≈.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,反比例函數(shù)(k>0)圖象經(jīng)過(guò)等邊△OAB的一個(gè)頂點(diǎn)B,點(diǎn)A坐標(biāo)為(2,0),過(guò)點(diǎn)BBMx軸,垂足為M

1)求點(diǎn)B的坐標(biāo)和k的值;

2)若將△ABM沿直線AB翻折,得到△ABM',判斷該反比例函數(shù)圖象是從點(diǎn)M'的上方經(jīng)過(guò),還是從點(diǎn)M'的下方經(jīng)過(guò),又或是恰好經(jīng)過(guò)點(diǎn)M',并說(shuō)明理由;

3)如圖2,在x軸上取一點(diǎn)A1,以AA1為邊長(zhǎng)作等邊△AA1B1,恰好使點(diǎn)B1落在該反比例函數(shù)圖象上,連接BB1,求△ABB1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)A種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x40),請(qǐng)用含x的代數(shù)式表示該玩具的銷(xiāo)售量.

2)若玩具廠規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于450件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

(3)該商場(chǎng)計(jì)劃將(2)中所得的利潤(rùn)的一部分資金采購(gòu)一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場(chǎng)調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉(cāng)庫(kù)保管費(fèi)350元,請(qǐng)問(wèn)商場(chǎng)如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)傳統(tǒng)文化,某校舉行校園謎語(yǔ)大賽,比賽結(jié)束后,組織者將所有參賽選手的比賽成績(jī)(得分均為5的倍數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下:

(1)本次比賽參賽選手共有 人,其中分有 人,分有 人;

(2)賽前規(guī)定,成績(jī)達(dá)到平均分的參賽選手即可獲獎(jiǎng).某參賽選手的比賽成績(jī)?yōu)?/span>75,試判斷他能否獲獎(jiǎng),并說(shuō)明理由;

(3)成績(jī)前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置5個(gè)正方形,點(diǎn)B1y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O60,B1C1B2C2B3C3,則點(diǎn)A3x軸的距離是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案