【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件.已知生產一件A種產品,需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產一件B種產品,需用甲種原料4千克、乙種原料10千克,可獲利潤1200元.設生產A種產品的生產件數(shù)為x,A、B兩種產品所獲總利潤為y(元).
(1)試寫出y與x之間的函數(shù)關系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質說明哪種生產方案獲總利潤最大?最大利潤是多少?
【答案】
(1)解:設生產A種產品x件,則生產B種產品(50﹣x)件,
由題意得:y=700x+1200(50﹣x)=﹣500x+60000,
即y與x之間的函數(shù)關系式為y=﹣500x+60000
(2)解:由題意得 ,
解得30≤x≤32.
∵x為整數(shù),
∴整數(shù)x=30,31或32
(3)解:∵y=﹣500x+60000,﹣500<0,
∴y隨x的增大而減小,
∵x=30,31或32,
∴當x=30時,y有最大值為﹣500×30+60000=45000.
即生產A種產品30件,B種產品20件時,總利潤最大,最大利潤是45000元
【解析】(1)由于用這兩種原料生產A、B兩種產品共50件,設生產A種產品x件,那么生產B種產品(50﹣x)件.由A產品每件獲利700元,B產品每件獲利1200元,根據(jù)總利潤=700×A種產品數(shù)量+1200×B種產品數(shù)量即可得到y(tǒng)與x之間的函數(shù)關系式;(2)關系式為:A種產品需要甲種原料數(shù)量+B種產品需要甲種原料數(shù)量≤360;A種產品需要乙種原料數(shù)量+B種產品需要乙種原料數(shù)量≤290,把相關數(shù)值代入得到不等式組,解不等式組即可得到自變量x的取值范圍;(3)根據(jù)(1)中所求的y與x之間的函數(shù)關系式,利用一次函數(shù)的增減性和(2)得到的取值范圍即可求得最大利潤.
【考點精析】掌握一元一次不等式組的應用是解答本題的根本,需要知道1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點作軸,垂足為.
(1)求拋物線的表達式;
(2)點在線段上(不與點、重合),過作軸,交直線于,交拋物線于點,連接,求面積的最大值;
(3)若是軸正半軸上的一動點,設的長為,是否存在,使以點為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某個公司有15名工作人員,他們的月工資情況如表.則該公司所有工作人員的月工資的平均數(shù)、中位數(shù)和眾數(shù)分別是( )
職務 | 經理 | 副經理 | 職員 |
人數(shù) | 1 | 2 | 12 |
月工資(元) | 5 000 | 2 000 | 800 |
A.520,2 000,2 000
B.2 600,800,800
C.1 240,2 000,800
D.1 240,800,800
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的部分商業(yè)連鎖店進行評估,將抽取的各商業(yè)連鎖店按照評估成績分成了、、、四個等級,并繪制了如下不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)本次評估隨機抽取了多少家商業(yè)連鎖店?
(2)請補充完整扇形統(tǒng)計圖和條形統(tǒng)計圖,并在圖中標注相應數(shù)據(jù);
(3)從、兩個等級的商業(yè)連鎖店中任選2家介紹營銷經驗,求其中至少有一家是等級的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com