【題目】在△ABC中,AB=AC,點D,E分別在AC,AB上,下列條件中,不能使BD=CE的是( )
A. BD,CE為AC,AB上的高
B. BD,CE都為△ABC的角平分線
C. ∠ABD=∠ABC,∠ACE=∠ACB
D. ∠ABD=∠BCE
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC,BD為對角線,AB=BC=AC=BD,則∠ADC的大小為( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1經(jīng)過點A(﹣1,0)和點B(1,4)
(1)求直線l1的表達(dá)式;
(2)若點P是x軸上的點,且△APB的面積為8,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點E,CF⊥BD于點F,試判斷四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在△ABC中,AB=AC,點D是線段BC上一個動點,以AD為腰在線段AD的右側(cè)作△ADE,且AD=AE。
(1)如圖①,當(dāng)∠BAC=∠DAE=90°時,試判斷線段BD和CE有什么關(guān)系,并給出證明:
(2)在(1)的條件下,若BC=4.試判斷四邊形ADCE的面積是否發(fā)生變化,若不變,求出四邊形ADCE的面積;若變化,請說明理由;
(3)如圖②,若∠BAC=∠DAE=120°,BC=4,試探索△DCE的面積是否存在最大值,若存在,求出此時∠DEC的度數(shù),若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合.將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,射線EF與線段AB相交于點G,與射線CA相交于點Q.
(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
(3)當(dāng)BP=a,CQ= a,求PQ長(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊AD上的一動點,矩形的兩條邊AB,BC的長分別是6和8,則點P到矩形的兩條對角線距離之和PE+PF是( )
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,連接BF,EF,恰有BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作EF的垂線,交EF于點M,交DA的延長線于點N,連接NG.
(1)求證:BE=2CF;
(2)試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分) 小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設(shè)計一種可行的裁剪方案;
(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設(shè)計一種裁剪方案,若不能,請簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com