【題目】如圖,在四邊形ABCD中,AC,BD為對角線,AB=BC=AC=BD,則∠ADC的大小為( )
A. 120°B. 135°C. 145°D. 150°
【答案】D
【解析】
先判斷出△ABC是等邊三角形,根據(jù)等邊三角形的每一個(gè)內(nèi)角都是60°可得∠ABC=60°,再根據(jù)等腰三角形兩底角相等表示出∠ADB、∠BDC,然后根據(jù)∠ADC=∠ADB+∠BDC求解即可.
∵AB=BC=AC,
∴△ABC是等邊三角形,
∴∠ABC=60°,
∵AB=BC=BD,
∴∠ADB=(180°∠ABD),
∠BDC=(180°∠CBD),
∴∠ADC=∠ADB+∠BDC,
=(180°∠ABD)+(180°∠CBD),
=(180°+180°∠ABD∠CBD),
=(360°∠ABC),
=180°×60°,
=150°.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=2x﹣3與y軸交于點(diǎn)A,點(diǎn)A與點(diǎn)B關(guān)于x軸對稱,過點(diǎn)B作y軸的垂線l,直線l與直線y=2x﹣3交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如果拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題:
(1)寫出電流I與電阻R之間的函數(shù)解析式.
(2)如果一個(gè)用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個(gè)用電器接在這個(gè)閉合電路中,會(huì)不會(huì)燒毀?說明理由.
(3)若允許的電流不超過4A時(shí),那么電阻R的取值應(yīng)該控制在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36
B.12
C.6
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM垂直平分AC,交BC于點(diǎn)D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com