【題目】如圖, 中, , , 是過 點(diǎn)的一條直線
(1)作 于點(diǎn), 點(diǎn),若點(diǎn)和點(diǎn)在直線的同側(cè),求證: ;
(2)若直線繞點(diǎn)旋轉(zhuǎn)到點(diǎn)和點(diǎn)在其兩側(cè),其余條件不變,問:的關(guān)系如何?請予以證明.
【答案】(1)證明見解析;(2)CE=BD+DE,理由見解析;
【解析】
(1)由AAS證明△ABD≌△CAE,得到BD=AE,AD=CE,即可解決問題.
(2)由AAS證明證明△ABD≌△CAE,得出BD=AE,AD=CE,即可得出結(jié)論.
(1)證明:∵∠BAC=90°,BD⊥DE,CE⊥DE,
∴∠DAB+∠DBA=∠DAB+∠EAC,
∴∠DBA=∠EAC;
在△ABD與△CAE中,
,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∴DE=BD+CE.
(2)解:CE=BD+DE;理由如下:
同(1)得:∠ABD=∠CAE,
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AD=AE+DE,
∴CE=BD+DE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長是14cm.
①求BC的長度;
②若點(diǎn)P為直線MN上一點(diǎn),請你直接寫出△PBC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=10,E為AB上一點(diǎn),且AE= AB=a,連結(jié)DE,F(xiàn)是DE中點(diǎn),連結(jié)BF,以BF為直徑作⊙O.
(1)用a的代數(shù)式表示DE2= , BF2=;
(2)求證:⊙O必過BC的中點(diǎn);
(3)若⊙O與矩形ABCD各邊所在的直線相切時(shí),求a的值;
(4)作A關(guān)于直線BF的對稱點(diǎn)A′,若A′落在矩形ABCD內(nèi)部(不包括邊界),則a的取值范圍 . (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.
(1)求證:AC⊥CD;
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鳳凰景區(qū)的團(tuán)體門票的價(jià)格規(guī)定如下表
購票人數(shù) | 1~55 | 56~110 | 111~165 | 165以上 |
價(jià)格(元/人) | 10 | 9 | 8 | 7 |
某校七年級(1)班和(2)班共112人去鳳凰景區(qū)進(jìn)行研學(xué)春游活動(dòng),當(dāng)兩班都以班為單位分別購票,則一共需付門票1060元.
(1)你認(rèn)為由更省錢的購票方式嗎?如果有,能節(jié)省多少元?
(2)若(1)班人數(shù)多于(2)班人數(shù),求(1)(2)班的人數(shù)各是多少?
(3)若七年級(3)班53人也一同前去春游時(shí),如何購票顯得更為合理?請你設(shè)計(jì)一種更省錢的方案,并求出七年級3個(gè)班共需付門票多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣(2m+1)x+2m不經(jīng)過第三象限,且當(dāng)x>2時(shí),函數(shù)值y隨x的增大而增大,則實(shí)數(shù)m的取值范圍是( )
A.0≤m≤1.5
B.m≥1.5
C.0≤m≤1
D.0<m≤1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點(diǎn)B1在線段BA延長線上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖2,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)F的對應(yīng)點(diǎn)是F1 , 求線段EF1長度的最大值與最小值的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對“學(xué)生在學(xué)校拿手機(jī)影響學(xué)習(xí)的情況”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了部分學(xué)生,對此問題的看法分為三種情況:沒有影響、影響不大、影響很大,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:
人數(shù)統(tǒng)計(jì)表如下:
看法 | 沒有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 20 | 30 | a |
(1)統(tǒng)計(jì)表中的a= ;
(2)請根據(jù)表中的數(shù)據(jù),談?wù)勀愕目捶ǎú簧儆?/span>2條)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com