【題目】如圖,在△ABC中,點D是BC的中點,連接AD,E,F(xiàn)分別是AD和AD延長線上的點.且DE=DF,連接BF,CE,下列說法中:①△ABD和△ACD的面積相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正確的說法有__________(填序號)
【答案】①③
【解析】
根據(jù)三角形中線的定義可得BD=CD,根據(jù)等底等高的三角形的面積相等判斷出①正確,然后利用“邊角邊”證明△BDF和△CDE全等,根據(jù)全等三角形對應邊相等可得CE=BF,全等三角形對應角相等可得∠F=∠CED,再根據(jù)內(nèi)錯角相等,兩直線平行可得BF∥CE.
解:∵AD是△ABC的中線,
∴BD=CD,
∴△ABD和△ACD面積相等,故①正確;
∵AD為△ABC的中線,
∴BD=CD,∠BAD和∠CAD不一定相等,故②錯誤;
在△BDF和△CDE中,
∵,
∴△BDF≌△CDE(SAS),
∴∠F=∠DEC,
∴BF∥CE,故③正確;
∵△BDF≌△CDE,
∴CE=BF,故④錯誤,
正確的結(jié)論為:①③,
故答案為:①③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次演講比賽中,評委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項成績均按百分制,進入決賽的兩名選手的單項成績?nèi)缦卤硭荆?/span>
選手 | 演講內(nèi)容 | 演講能力 | 演講效果 |
甲 | 85 | 95 | 95 |
乙 | 95 | 85 | 95 |
(1)如果認為這三方面的成績同等重要,從他們的成績看,誰能勝出?
(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計算甲、乙的平均成績,那么誰將勝出?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形(B,E,C三點在一條直線上),利用這個圖形,求證:a2+b2=c2
(2)當a=1,b=2時,將其中一個直角三角形放入平面直角坐標系中(如圖(3)),使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合.
請在坐標軸上找一點C,使△ABC為等腰三角形.
寫出一個滿足條件的在x軸上的點的坐標: ;
寫出一個滿足條件的在y軸上的點的坐標: ,這樣的點有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與y軸交于點A,與x軸交于點B,過AB中點D的直線CD交x軸于點C,且經(jīng)過第一象限的點E(6,4).
(1)求A,B兩點的坐標及直線CD的函數(shù)表達式;
(2)連接BE,求△DBE的面積;
(3)連接DO,在坐標平面內(nèi)找一點F,使得以點C,O,F(xiàn)為頂點的三角形與△COD全等,請直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某科技有限公司準備購進A和B兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:
(1)求A、B兩種機器人每個的進價;
(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求證:△AEH≌△CGF;
(2)求證:四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中,錯誤的是( ) ①m是無理數(shù);
②m是方程m2﹣12=0的解;
③m滿足不等式組 ;
④m是12的算術(shù)平方根.
A.①②
B.①③
C.③
D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com