【題目】某水果批發(fā)商經(jīng)營(yíng)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷(xiāo)售利潤(rùn)(萬(wàn)元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷(xiāo)售利潤(rùn)(萬(wàn)元)與進(jìn)貨量x(噸)之間的函數(shù)關(guān)系如圖所示.

1)求(萬(wàn)元)與x(噸)之間的函數(shù)關(guān)系式;

2)如果該批發(fā)商準(zhǔn)備進(jìn)甲、乙兩種水果共10,設(shè)乙種水果的進(jìn)貨量為t噸,請(qǐng)你求出這兩種水果所獲得的銷(xiāo)售利潤(rùn)總和W(萬(wàn)元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷(xiāo)售利潤(rùn)總和最大,最大利潤(rùn)是多少?

【答案】(1);(2)甲、乙兩種水果的進(jìn)貨量分別為4噸和6噸時(shí),獲得的銷(xiāo)售利潤(rùn)總和最大,最大利潤(rùn)是5.6萬(wàn)元.

【解析】

1)根據(jù)題意列出二元一次方程組,求出a、b的值即可求出函數(shù)關(guān)系式的解.
2)由題意可得,用配方法化簡(jiǎn)函數(shù)關(guān)系式即可求出w的最大值.

1)根據(jù)圖象,可設(shè)(其中,a,b為常數(shù)),

由題意,得解得解得

2乙種水果的進(jìn)貨量為t噸,則甲種水果的進(jìn)貨量為噸,

由題意,得

將函數(shù)配方為頂點(diǎn)式,得

,拋物線開(kāi)口向下.

,時(shí),W有最大值為5.6

(噸).

答:甲、乙兩種水果的進(jìn)貨量分別為4噸和6噸時(shí),獲得的銷(xiāo)售利潤(rùn)總和最大,最大利潤(rùn)是5.6萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC與正方形DEFG重疊,其中D、E兩點(diǎn)分別在AB、BC上,且BDBE,若AB6,DE2,則△EFC的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知半徑為2⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l的垂線,垂足為C,PC⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長(zhǎng)為x(2x4

1】當(dāng)時(shí),求弦PA、PB的長(zhǎng)度;

2】當(dāng)x為何值時(shí),PD×CD的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若用有序數(shù)對(duì)(m,n)表示第m排,從左到右第n個(gè)數(shù),如(3,2)表示正整數(shù)5,(4,3)表示正整數(shù)9,則(20,19)表示的正整數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為13的菱形ABCD沿AD方向平移至DCEF的位置,作EGAB,垂足為點(diǎn)G,GD的延長(zhǎng)線交EF于點(diǎn)H,已知BD24,則GH_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AC4,BC2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個(gè)互為相似的三角形,則CD的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線yax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。

A. b24ac

B. ax2+bx+c6

C. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根分別為﹣5和﹣1

D. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則mn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了安全,請(qǐng)勿超速.如圖,一條公路建成通車(chē),在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車(chē)輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車(chē)超速了嗎?請(qǐng)說(shuō)明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、點(diǎn)Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts),BPQ的面積為y),已知yt之間的函數(shù)圖象如圖2所示.

給出下列結(jié)論:①當(dāng)0t≤10時(shí),△BPQ是等腰三角形;②=48;③當(dāng)14t22時(shí),y=110-5t;④在運(yùn)動(dòng)過(guò)程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤△BPQ與△ABE相似時(shí),t=14.5

其中正確結(jié)論的序號(hào)是_______

查看答案和解析>>

同步練習(xí)冊(cè)答案