【題目】閱讀理解并填空:
(1)為了求代數(shù)式 的值,我們必須知道x的值.若x=1,則這個代數(shù)式的值為;若x=2,則這個代數(shù)式的值為 , ……可見,這個代數(shù)式的值因x的取值不同而變化.盡管如此,我們還是有辦法來考慮這個代數(shù)式的值的范圍.
(2)把一個多項(xiàng)式進(jìn)行部分因式分解可以解決求代數(shù)式的最大(或最小)值問題.例如: =( ) = ,因?yàn)? 是非負(fù)數(shù),所以,這個代數(shù)式 的最小值是 , 這時相應(yīng)的x的平方是.
嘗試探究并解答:
(3)求代數(shù)式 的最小值,并寫出相應(yīng)x的值.
(4)求代數(shù)式 的最大值,并寫出相應(yīng)x的值.
(5)已知 ,且x的值在數(shù)1~4(包含1和4)之間變化,試探求此時y的不同變化范圍(直接寫出當(dāng)x在哪個范圍變化時,對應(yīng)y的變化范圍).
【答案】
(1)6;11
(2)2;1
(3)
解: =(x-12x+36)+1=(x-6)2+1,
因?yàn)?x-6)2是非負(fù)數(shù),
所以當(dāng)x-6=0時,即x=6時,
有最小值,最小值為1.
(4)
解: =-(x2+6x+9)+2=-(x+3)2+2,
因?yàn)?(x+3)2≤0,
所以當(dāng)x+3=0時,即x=-3時,
有最大值2.
(5)
解: =-(x-3)2+6,
當(dāng)x=3時,y有最大值為6;
當(dāng)x=1時,y=2;
當(dāng)x=4時,y=5.
故當(dāng)x的值在數(shù)1~3(包含1和3)之間變化時,y的值在2~6(包含2和6)之間變化;
當(dāng)x的值在數(shù)3~4(包含4和5)之間變化時,y的值在5~6(包含5和6)之間變化.
【解析】(1)當(dāng)x=1時, =1+2+3=6;
當(dāng)x=2時, =4+4+3=11;
所以答案是6|11;
2)由題得 =( ) = ,
因?yàn)? ≥0,
所以 ≥2,僅當(dāng)x=-1時, 取最小值為2,此時x2=1.
所以答案是2|1.
【考點(diǎn)精析】利用代數(shù)式求值和多項(xiàng)式對題目進(jìn)行判斷即可得到答案,需要熟知求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入;幾個單項(xiàng)式的和叫多項(xiàng)式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字:
我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2 .
請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)圖3中給出了若干個邊長為a和邊長為b的小正方形紙片及若干個邊長分別為a、b的長方形紙片, ①請按要求利用所給的紙片拼出一個幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2 ,
②再利用另一種計算面積的方法,可將多項(xiàng)式2a2+5ab+2b2分解因式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們進(jìn)入中學(xué)以來,已經(jīng)學(xué)習(xí)過不少有關(guān)數(shù)據(jù)的統(tǒng)計量,例如_____________________等,它們分別從不同的側(cè)面描述了一組數(shù)據(jù)的特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,能夠反映一組數(shù)據(jù)離散程度的統(tǒng)計量是( )
A.平均數(shù)
B.中位數(shù)
C.眾數(shù)
D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(山東泰安,第27題)(10分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:ACCD=CPBP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.兩直線被第三條直線所截得的同位角相等
B.兩直線被第三條直線所截得的同旁內(nèi)角互補(bǔ)
C.兩平行線被第三條直線所截得的同位角的平分線互相垂直
D.兩平行線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住世博會商機(jī),某商店決定購進(jìn)A、B兩種世博會紀(jì)念品,若購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品5件,需要1000元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品3件,需要550元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定拿出4000元全部用來購進(jìn)這兩種紀(jì)念品,考慮市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種紀(jì)念品數(shù)量的6倍,且不超過B鐘紀(jì)念品數(shù)量的8倍,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 2016湖北鄂州第23題)某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費(fèi)用,設(shè)每個房間定價增加10 x元(x為整數(shù))。
⑴(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
⑵(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
⑶(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費(fèi)用沒有超過600元,③每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若甲組數(shù)據(jù)方差為1.2,乙組數(shù)據(jù)方差為1.6,那么更穩(wěn)定的是______(填甲或者乙)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com