【題目】已知:如圖,正方形ABCD中,點(diǎn)F是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn).

(1)如圖1,連接AF,CF,直接寫(xiě)出AFCF的數(shù)量關(guān)系;

(2)如圖2,點(diǎn)EAD邊的中點(diǎn),當(dāng)點(diǎn)F運(yùn)動(dòng)到線段EC上時(shí),連接AF,BE相交于點(diǎn)O.

①請(qǐng)你根據(jù)題意在圖2中補(bǔ)全圖形;

②猜想AFBE的位置關(guān)系,并寫(xiě)出證明此猜想的思路;

③如果正方形的邊長(zhǎng)為2,直接寫(xiě)出AO的長(zhǎng).

【答案】(1)AF=CF(2)① 圖形見(jiàn)解析②.

【解析】試題分析:(1)根據(jù)正方形的對(duì)稱(chēng)性即可得結(jié)論;(2)①根據(jù)題意,補(bǔ)全圖形即可;②AFBE,由四邊形ABCD是正方形,可得AD=CD,ADB=CDB.進(jìn)而可得ΔADFΔCDF.從而得到1=2;E為正方形ABCDAD邊的中點(diǎn),可證ΔABEΔDCE.從而得到∠3=4;由∠2+4=90°可知∠1+3=90°,進(jìn)而可得∠AOE=90°,AFBE.③根據(jù)勾股定理可得BE=,因AFBE,根據(jù),即可求得AO的長(zhǎng).

試題解析:

(1)解:AF=CF.

(2)解:① 補(bǔ)全圖形:

.

證明思路如下:

(i)由四邊形ABCD是正方形,

可得ADCD,ADBCDB.

進(jìn)而可得.從而得到1=2.

(ii)E為正方形ABCDAD邊的中點(diǎn),可證.

從而得到∠3=4.

(iii)由∠2+4=90°可知∠1+3=90°,進(jìn)而可得∠AOE=90°.

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(2a4)x2(3a6)xa80沒(méi)有常數(shù)項(xiàng),則a的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC和△DEF中,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;
②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,AC=DF;
④∠A=∠D,∠B=∠E,∠C=∠F.
其中,能使△ABC≌△DEF的條件共有( )
A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過(guò)E點(diǎn)作EF∥AB(經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過(guò)程填寫(xiě)完整.

解:因?yàn)镋F∥AD(已知)

所以∠2=∠3.( )

又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因?yàn)椤螧AC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,已知:點(diǎn)在雙曲線上,直線,直線關(guān)于原點(diǎn)成中心對(duì)稱(chēng),兩點(diǎn)間的連線與曲線第一象限內(nèi)的交點(diǎn)為是曲線上第一象限內(nèi)異于的一動(dòng)點(diǎn),過(guò)軸平行線分別交兩點(diǎn).

(1)求雙曲線及直線的解析式;

(2)求證:

(3)如圖2所示,的內(nèi)切圓與邊分別相切于點(diǎn),求證:點(diǎn)與點(diǎn)重合.(參考公式:在平面坐標(biāo)系中,若有點(diǎn),,則A、B兩點(diǎn)間的距離公式為=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)2xx;

(2)3(5x6)320x

(3) x1;

(4) 3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016山東省泰安市第26題)某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動(dòng)該項(xiàng)目的開(kāi)展,學(xué)校準(zhǔn)備到體育用品店購(gòu)買(mǎi)直拍球拍和橫拍球拍若干副,并且每買(mǎi)一副球拍必須要買(mǎi)10個(gè)乒乓球,乒乓球的單價(jià)為2元/個(gè),若購(gòu)買(mǎi)20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購(gòu)買(mǎi)10副橫拍球拍比購(gòu)買(mǎi)5副直拍球拍多花費(fèi)1600元.

(1)求兩種球拍每副各多少元?

(2)若學(xué)校購(gòu)買(mǎi)兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請(qǐng)你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5,直線AB與⊙O有交點(diǎn),則直線AB到⊙O的距離可能為( 。
A.5.5
B.6
C.4.5
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)的圖象與BC邊交于點(diǎn)E.

當(dāng)FAB的中點(diǎn)時(shí),求該函數(shù)的解析式;

當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案