【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數圖象.已知媽媽駕車的速度是小明騎車速度的3倍.
(1)求小明騎車的速度和在甲地游玩的時間;
(2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?
(3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.
【答案】(1),0.5h.(2)1.75,25km,(3)30km.
【解析】
(1)根據圖象可以求出小明在甲地游玩的時間,由速度=路程÷時間就可以求出小明騎車的速度;
(2)直接運用待定系數法就可以求出直線BC和DE的解析式,再由其解析式建立二元一次方程組,求出點F的坐標就可以求出結論;
(3)設從媽媽追上小明的地點到乙地的路程為n(km),根據媽媽比小明早到10分鐘列出有關n的方程,求得n值即可.
(1)小明騎車速度:,
在甲地游玩的時間是1﹣0.5=0.5(h).
(2)媽媽駕車速度:20×3=60(km/h)
設直線BC解析式為y=20x+b1,
把點B(1,10)代入得b1=﹣10
∴y=20x﹣10
設直線DE解析式為y=60x+b2,把點D(,0)
代入得b2=﹣80∴y=60x﹣80…(5分)
∴
解得
∴交點F(1.75,25).
答:小明出發(fā)1.75小時(105分鐘)被媽媽追上,此時離家25km.
(3)設從媽媽追上小明的地點到乙地的路程為n(km),
由題意得:
∴n=5
∴從家到乙地的路程為5+25=30(km).
科目:初中數學 來源: 題型:
【題目】如圖,點A的坐標為(-1,0),點B在直線上運動,當線段AB最短時,點B的坐標為( )
A. (0,0) B. (,) C. (,) D. (,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,半徑OC⊥AB交AB于點D,點P是⊙O上AB上方的一個動點(P不與A、B重合),已知∠APB=60°,∠OCB=2∠BCM.
(1)設∠A=α,當圓心O在∠APB內部時,寫出α的取值范圍;
(2)求證:CM是⊙O的切線;
(3)若OC=4,PB=4,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,點C在以AB為直徑的⊙O上,AD與過點C的切線CD垂直,垂足為點D.
求證:AC平分∠DAB;
(2)如圖2,△ABC為等腰三角形,AB=AC,O是BC的中點,AB與⊙O相切于點D.
求證:是⊙的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是規(guī)格為的正方形網格,請在所給網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使點A的坐標為,點的坐標為;
(2)在第二象限內的格點上找一點,使點與線段組成一個以為底的等腰三角形,且腰長是無理數,畫出,則點的坐標是 ,的周長是 (結果保留根號);
(3)作出關于軸對稱的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與⊙相切于點為⊙的直徑, 是直徑右側半圓上的一個動點(不與點、重合),過點作,垂足為,連接、.設, .求: (1)與相似嗎?為什么?
(2)求與的函數關系式;
(3)當為何值時,取得最大值,最大值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為(m2),種草所需費用1(元)與(m2)的函數關系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數關系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請直接寫出k1、k2和b的值;
(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與的函數關系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com