精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:

(1)∠PBC=∠CBD;

(2)=ABBD.

【答案】(1)證明見解析;(2)證明見解析

【解析】

試題分析:(1)連接OC,由PC為圓O的切線,利用切線的性質得到OC垂直于PC,再由BD垂直于PD,得到一對直角相等,利用同位角相等兩直線平行得到OC與BD平行,進而得到一對內錯角相等,再由OB=OC,利用等邊對等角得到一對角相等,等量代換即可得證;

(2)連接AC,由AB為圓O的直徑,利用圓周角定理得到∠ACB為直角,利用兩對角相等的三角形相似得到三角形ABC與三角形CBD相似,利用相似三角形對應邊成比例,變形即可得證.

試題解析:(1)連接OC,∵PC與圓O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;

(2)連接AC,∵AB為圓O的直徑,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴,則=ABBD.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結論的序號都選上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,P和⊙Q分別是△ABC和△ADC的內切圓,則PQ的長是( )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖(1)在ABC中,∠BAC90°ABAC,直線m經過點ABD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:DEBD+CE

2)如圖(2)將(1)中的條件改為:在ABC中,ABACD、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結論DEBD+CE是否成立?如成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程ykm)與小明離家時間xh)的函數圖象.已知媽媽駕車的速度是小明騎車速度的3倍.

1)求小明騎車的速度和在甲地游玩的時間;

2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?

3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數關系式;

2求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少

3如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經過的時間(單位:)之間的關系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結論:足球距離地面的最大高度為足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結論的個數是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:如圖,

已知,把線段分割成,,,若,為邊的三角形是一個直角三角形,則稱點是線段的勾股分割點.

1)已知,把線段分割成,,若,,,則點,是線段的勾股分割點嗎?請說明理由;

2)已知點,是線段的勾股分割點,且為直角邊,若,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;

(2)若AB=2,AD=4,求MD的長.

查看答案和解析>>

同步練習冊答案