【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C點坐標;
(2)如圖②過C點作CD⊥X軸于D,連接AD,求∠ADC的度數(shù);
(3)如圖③在(1)中,點A在Y軸上運動,以OA為直角邊作等腰Rt△OAE,連接EC,交Y軸于F,試問A點在運動過程中S△AOB:S△AEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值 (不需要解答過程或說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
⑴求拋物線的解析式及點C的坐標;
⑵求證:△ABC是直角三角形;
⑶若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知ABCD是一個以AD為直徑的圓內接四邊形,分別延長AB和DC,它們相交于P,若∠APD=60°,AB=5,PC=4,則⊙O的面積為( 。
A. 25π B. 16π C. 15π D. 13π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設反比例函數(shù)的解析式為v=,
由題意知,圖象經過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應用.解題的關鍵是從圖中得到關鍵性的信息:自變量的取值范圍和圖象所經過的點的坐標.
【題型】解答題
【結束】
24
【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用尺規(guī)按以下步驟作圖:①以點A為圓心,以任意長為半徑作弧交AN于點C,交AB于點D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內交于點E;③作射線AE交PQ于點F.若AB=2,∠ABP=60°,則線段AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有以下命題:
①如果線段d是線段a,b,c的第四比例項,則有;
②如果點C是線段AB的中點,那么AC是AB.BC的比例中項;
③如果點C是線段AB的黃金分割點,且AC>BC,那么AC是AB與BC的比例中項;
④如果點C是線段AB的黃金分割點,AC>BC,且AB=2,則AC=-1.
其中正確的判斷有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某蔬菜生產基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線的一部分,請根據圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內保持大棚里溫度在15℃及15℃以上的時間有多少小時?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com