【題目】如圖,斜坡AB長(zhǎng)10米,按圖中的直角坐標(biāo)系可用表示,點(diǎn)A,B分別在x軸和y軸上,且.在坡上的A處有噴灌設(shè)備,噴出的水柱呈拋物線形落到B處,拋物線可用表示.
(1)求拋物線的函數(shù)關(guān)系式(不必寫(xiě)自變量取值范圍);
(2)求水柱離坡面AB的最大高度;
(3)在斜坡上距離A點(diǎn)2米的C處有一顆3.5米高的樹(shù),水柱能否越過(guò)這棵樹(shù)?
【答案】(1);(2)米;(3)水柱能越過(guò)樹(shù)
【解析】
(1)根據(jù)直角三角形的性質(zhì)求出點(diǎn)A、B的坐標(biāo),再利用待定系數(shù)法求解可得;
(2)水柱離坡面的距離d=-x2+x+5-(-x+5),整理成一般式,再配方成頂點(diǎn)式即可得;
(3)先求出點(diǎn)C的坐標(biāo)為(4,1),再求出x=4時(shí)的函數(shù)值y,與1+3.5比較大小即可得.
(1)∵AB=10、∠OAB=30°,
∴OB=AB=5、OA=ABcos∠OAB=10×=5,
則A(5,0)、B(0,5),
將A、B坐標(biāo)代入y=-x2+bx+c,得:
,
解得:,
∴拋物線解析式為y=-x2+x+5;
(2)水柱離坡面的距離d=-x2+x+5-(-x+5)
=-x2+x
=-(x2-5x)
=-(x-)2+,
∴當(dāng)x=時(shí),水柱離坡面的距離最大,最大距離為米;
(3)如圖,過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,
∵AC=2、∠OAB=30°,
∴CD=1、AD=,
則OD=4,
當(dāng)x=4時(shí),y=-×(4)2+×4+5=5>1+3.5,
所以水柱能越過(guò)樹(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=AC,E是邊BC上的點(diǎn),且∠AED=∠CAD,DE交AC于點(diǎn)F.
(1)求證:△ABE∽△DAF;
(2)當(dāng)ACFC=AEEC時(shí),求證:AD=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為初三學(xué)生定制校服,對(duì)部分學(xué)生的服裝型號(hào)做了調(diào)查,結(jié)果如下:
型號(hào) | 140 | 150 | 160 | 170 | 180 |
男生 | 11 | 18 | 9 | 7 | 5 |
女生 | 9 | 12 | 18 | 7 | 4 |
下列說(shuō)法正確的是( )
A.男生服裝型號(hào)的眾數(shù)大于女生服裝型號(hào)的眾數(shù)
B.男生服裝型號(hào)的中位數(shù)等于女生服裝型號(hào)的中位數(shù)
C.男生服裝型號(hào)的眾數(shù)小于女生服裝型號(hào)的眾數(shù)
D.男生服裝型號(hào)的中位數(shù)大于女生服裝型號(hào)的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,∠ABC=45°,AB=AC,點(diǎn)E,F分別CD、AC邊上的點(diǎn),且AF=CE,BF的延長(zhǎng)線交AE于點(diǎn)G.
(1)若DE=2,AD=8,求AE.
(2)若G是AE的中點(diǎn),連接CG,求證:AE+CG=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間某商場(chǎng)搞促銷(xiāo)活動(dòng),方案是:在一個(gè)不透明的箱子里放4個(gè)完全相同的小球,球上分別標(biāo)“0元”、“20元”、“30元”、“50元”,顧客每消費(fèi)滿300元,就可從箱子里同時(shí)摸出兩個(gè)球,根據(jù)這兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品;
(1)若某顧客在甲商商場(chǎng)消費(fèi)320元,至少可得價(jià)值______元的禮品,至多可得價(jià)值______元的禮品;
(2)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求該顧客去商場(chǎng)消費(fèi),獲得禮品的總價(jià)值不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(4,0),B(4,4),點(diǎn)P在半徑為2的圓O上運(yùn)動(dòng),則的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知:在矩形ABCD中,ABcm,AD=9cm,點(diǎn)O從A點(diǎn)出發(fā)沿AD以acm/s的速度移向點(diǎn)D移動(dòng),以O為圓心,2cm長(zhǎng)為半徑作圓,交射線AD于M(點(diǎn)M在點(diǎn)O右側(cè)).同時(shí)點(diǎn)E從C點(diǎn)出發(fā)沿CD以cm/s的速度移向點(diǎn)D移動(dòng),過(guò)E作直線EF∥BD交BC于F,再把△CEF沿著動(dòng)直線EF對(duì)折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)G. 若在整過(guò)移動(dòng)過(guò)程中△EFG的直角頂點(diǎn)G能與點(diǎn)M重合.設(shè)運(yùn)動(dòng)時(shí)間為t(0<t≤3)秒.
(1)求a的值;
(2)在運(yùn)動(dòng)過(guò)程中,
①當(dāng)直線FG與⊙O相切時(shí),求t的值;
②是否存在某一時(shí)刻t,使點(diǎn)G恰好落在⊙O上(異于點(diǎn)M)?若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】1400多年前,我國(guó)隋代建造的石拱橋——趙州橋(如圖(1)),是我國(guó)古代人民勤勞與智慧的結(jié)晶.如圖(2)是它的簡(jiǎn)化示意圖,主橋拱是,拱高(的中點(diǎn)到弦的距離)為.
(1)在圖(2)中(點(diǎn)為圓心),用尺規(guī)作圖作出的中點(diǎn).(不要求寫(xiě)作法,但保留作圖痕跡)
(2)若,求主橋拱的跨度的長(zhǎng).(結(jié)果精確到參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com