【題目】小穎根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究,下面是小穎的探究過程,請你補充完整.

1)列表:

x

-2

-1

0

1

2

3

4

y

-2

-1

0

1

0

-1

k

____;

②若,,為該函數(shù)圖象上不同的兩點,則____;

2)描點并畫出該函數(shù)的圖象;

3)①根據(jù)函數(shù)圖象可得:該函數(shù)的最大值為____;

②觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì)________________________;_____________________;

③已知直線與函數(shù)的圖象相交,則當(dāng)時,的取值范圍為是____

【答案】1)①;②;(2)見解析;(3)①1;②見解析;③

【解析】

1)①把x=4代入,即可得到結(jié)論;②把代入,即可得到結(jié)論;

2)根據(jù)題意畫出函數(shù)圖象即可;

3)①根據(jù)函數(shù)的圖象即可得到結(jié)論;②根據(jù)函數(shù)的圖象即可得到性質(zhì);③通過數(shù)形結(jié)合進行求解即可.

1)①把x=4代入;

代入,解得

為該函數(shù)圖象上不同的兩點

;

2)該函數(shù)的圖象如下圖所示,

3)根據(jù)函數(shù)圖象可知:

①該函數(shù)的最大值為1;

②性質(zhì):該函數(shù)的圖象是軸對稱圖形;當(dāng)時,y隨著x的增大而增大,當(dāng)時,y隨著x的增大而減。

③∵的圖象相交于點,,

∴當(dāng)時,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示:

1)寫出點AB,C三點的坐標(biāo);

2)若△ABC各頂點的橫坐標(biāo)不變,縱坐標(biāo)都乘以﹣1,請你在同一坐標(biāo)系中描出對應(yīng)的點A',B',C',并依次連接這三點,所得的△A'B'C'與原△ABC的位置關(guān)系是什么?

3)在x軸上作出一點P,使得AP平分∠BAC.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點AC分別在軸和軸上,點B的坐標(biāo)為23。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE

1)求k的值及點E的坐標(biāo);

2)若點F是邊上一點,且FBC∽△DEB,求直線FB的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次趣味數(shù)學(xué)競賽,滿分分,學(xué)生得分均為整數(shù),成績達到分及以上為合格,達到分及以上為優(yōu)秀這次競賽中,甲、乙兩組學(xué)生成績?nèi)缦?/span>(單位:分)

甲組:,,,,,

乙組:,,,,,

1

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

68

a

376

90%

30%

乙組

b

c

196

80%

20%

以上成績統(tǒng)計分析表中________分,_________分,________分;

2)小亮同學(xué)說:這次競賽我得了分,在我們小組中排名屬中游略偏上!觀察上面表格判斷,小亮可能是甲、乙哪個組的學(xué)生?并說明理由.

3)如果你是該校數(shù)學(xué)競賽的教練員,現(xiàn)在需要你選擇一組同學(xué)代表學(xué)校參加復(fù)賽,你會選擇哪一組?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著低碳生活,綠色出行理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解2A型汽車、3B型汽氣車的進價共計80萬元;3A型汽車、2B型汽車的進價共計95萬元。

(1)A、B兩種型號的汽車每輛進價分別為多少方元?

(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設(shè)計購買方案;

(3)若該汽車銷售公司銷售1A型汽車可獲利8000,銷售1B型汽車可獲利5000,(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市進貨員預(yù)測一種應(yīng)季水果能暢銷市場,用3000元購進第一批這種水果,面市后果然供不應(yīng)求,全部賣完,超市進貨員又用1500元購進了第二批這種水果,但進價比第一批上漲了50%,若兩批水果的平均價格為9/kg

1)求購進第一批該種水果的單價;

2)第一批水果的銷售單價為10/kg,第二批水果的銷售單價為15/kg,但在第二批水果的銷售過程中發(fā)現(xiàn)銷量不好,超市決定第二批水果銷售一定數(shù)量后將剩余水果按原售價的7折銷售.要使兩批水果全部銷售后共獲利不少于900元,問第二批水果按原銷售單價至少銷售多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,F與y軸相交于另一點G.

(1)求證:BC是F的切線;

(2)若點A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求F的半徑;

(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案