【題目】如圖,在平面直角坐標系中,直線y=﹣x+5x軸交于點B,與y軸交于點C.拋物線yx2+bx+c經(jīng)過點B和點C,與x軸交于另一點A,連接AC

1)求拋物線的解析式;

2)若點Q在直線BC上方的拋物線上,連接QCQB,當△ABC與△QBC的面積比等于23時,直接寫出點Q的坐標:

3)在(2)的條件下,點Hx軸的負半軸,連接AQ,QH,當∠AQH=∠ACB時,直接寫出點H的坐標.

【答案】1yx26x+5;(2)點Q(﹣1,12)或(65);(3)點H的坐標為:(﹣190)或(﹣,0).

【解析】

1)直線y=-x+5x軸交于點B,與y軸交于點C,則點BC的坐標分別為:(5,0)、(0,5),即可求解;

2)過點A作直線BC的平行線ny軸于點M,則點M0,1),則CM=5-1=4,在點C上方取CN=CM=6,過點N作直線m交拋物線于點QQ′),則點Q為所求,即可求解

3)分點Q6,5)、點Q-112)兩種情況,分別求解即可.

解:(1)直線y=﹣x+5x軸交于點B,與y軸交于點C,則點B、C的坐標分別為:(5,0)、(0,5),則c5,將點B的坐標代入拋物線表達式并解得:b=﹣6,

故拋物線的表達式為:yx26x+5;

2)過點A作直線BC的平行線ny軸于點M,則點M0,1),則CM514,

在點C上方取CNCM6,過點N作直線m交拋物線于點QQ′),則點Q為所求,

則點N011),則直線m的表達式為:y=﹣x+11,

聯(lián)立①②并解得:x=﹣16,

故點Q(﹣112)或(6,5);

3)過點AAKBC于點K,

AB4,則AKBKAC,

sinABCsinα,則tanα=;

當點Q6,5)時,

過點HHRAQQA的延長線于點R

由點A、Q的坐標知,tanQAB1tanβ,故β45°,AQ5,

HRARxtanHQRtanα

解得:x10,AHx20,

故點H(﹣19,0);

當點Q(﹣1,12)時,

同理可得:點H(﹣0);

綜上,點H的坐標為:(﹣19,0)或(﹣,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜(

A.24B.25C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課題研究小組對附著在物體表面的三個微生物(課題小組成員把他們分別標號為1,2,3)的生長情況進行觀察記錄.這三個微生物第一天各自一分為二,產(chǎn)生新的微生物(分別被標號為4,5,6,7,8,9),接下去每天都按照這樣的規(guī)律變化,即每個微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進行形象的記錄).那么標號為100的微生物會出現(xiàn)在( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在一次大課間活動中,采用了四種活動形式:A:跑步;B:跳繩;C:做操;D:游戲,全校學生都選擇了一種形式參與活動,小明對同學們選擇的活動形式進行了隨機抽樣調(diào)查,并繪制了不完整的兩幅統(tǒng)計圖(如圖):

1)本次共調(diào)查了多少名學生?

2)跳繩B對應扇形的圓心角為多少度?

3)學校在每班A、BC、D四種活動形式中,隨機抽取兩種開展活動,求每班抽取的兩種形式恰好是做操跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是菱形ABCD對角線的交點,過點CCEOD,過點DDEACCEDE相交于點E

1)求證:四邊形OCED是矩形.

2)若AB4,∠ABC60°,求矩形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點O為圓心,OA為半徑作弧交AB于點C,交OB于點D,若OA4,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,矩形DEFG的頂點G、F分別在ACBC上,DEAB上,設(shè)AG5,AD4,求ADGFEB的面積比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將大小兩把含30°角的直角三角尺按如圖1 位置擺放,即大小直角三角尺的直角頂點C 重合,小三角尺的頂點 DE 分別在大三角尺的直角邊 ACBC 上,此時小三角尺的斜邊 DE 恰好經(jīng)過大三角尺的重心G .已知A CDE 30°, AB 12 .

(1)求小三角尺的直角邊CD 的長;

(2)將小三角尺繞點C 逆時針旋轉(zhuǎn),當點D第一次落在大三角尺的邊 AB 上時(如圖2),求點 B 、 E 之間的距離;

(3)在小三角尺繞點C 旋轉(zhuǎn)的過程中,當直線 DE 經(jīng)過點 A 時,求BAE 的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數(shù);

2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈sin48°≈,cos48°≈,tan48°≈

查看答案和解析>>

同步練習冊答案