【題目】如圖,在△ABC中,∠C=90°,矩形DEFG的頂點(diǎn)G、F分別在AC、BC上,DE在AB上,設(shè)AG=5,AD=4,求△ADG與△FEB的面積比.
【答案】16:9.
【解析】
通過(guò)兩個(gè)角對(duì)應(yīng)相等可證明△ADG∽△FEB,再根據(jù)勾股定理和相似三角形的性質(zhì)解答即可.
解:∵∠C=90°,
∴∠A+∠B=90°,
∵四邊形DEFG是矩形,
∴∠GDE=∠FED=90°,
∴∠GDA+∠FEB=90°,
∴∠A+∠AGD=90°,
∴∠B=∠AGD,
且∠GDA=∠FEB=90°,
∴△ADG∽△FEB.
在Rt△AGD中,∠GDA=90°,
由勾股定理得,AD2+GD2=AG2,
∵AD=4,AG=5,
∴GD=3,
∴EF=3,
∴,
∴△ADG與△FEB的面積比是16:9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
如果函數(shù) y=f(x)滿(mǎn)足:對(duì)于自變量 x 的取值范圍內(nèi)的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),則稱(chēng) f(x)是增函數(shù);
(2)若 x1<x2,都有 f(x1)>f(x2),則稱(chēng) f(x)是減函數(shù).
例題:證明函數(shù)f(x)= (x>0)是減函數(shù).
證明:設(shè) 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函數(shù) f(x)= (x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問(wèn)題:
已知函數(shù).
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)計(jì)算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函數(shù)是 函數(shù)(填“增”或“減”);
(3)請(qǐng)仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直徑為10的⊙A經(jīng)過(guò)點(diǎn)C(0,5)和點(diǎn)O (0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點(diǎn),則∠OBC 的余弦值為 _________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣x+5與x軸交于點(diǎn)B,與y軸交于點(diǎn)C.拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B和點(diǎn)C,與x軸交于另一點(diǎn)A,連接AC.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)Q在直線(xiàn)BC上方的拋物線(xiàn)上,連接QC,QB,當(dāng)△ABC與△QBC的面積比等于2:3時(shí),直接寫(xiě)出點(diǎn)Q的坐標(biāo):
(3)在(2)的條件下,點(diǎn)H在x軸的負(fù)半軸,連接AQ,QH,當(dāng)∠AQH=∠ACB時(shí),直接寫(xiě)出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京第一條地鐵線(xiàn)路于1971年1月15日正式開(kāi)通運(yùn)營(yíng).截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進(jìn)“森林城市”建設(shè),今春種植四類(lèi)樹(shù)苗,園林部門(mén)從種植的這批樹(shù)苗中隨機(jī)抽取了4000棵,將各類(lèi)樹(shù)苗的種植棵數(shù)繪制成扇形統(tǒng)計(jì)圖,將各類(lèi)樹(shù)苗的成活棵數(shù)繪制成條形統(tǒng)計(jì)圖,經(jīng)統(tǒng)計(jì)松樹(shù)和楊樹(shù)的成活率較高,且楊樹(shù)的成活率為97%,根據(jù)圖表中的信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中松樹(shù)所對(duì)的圓心角為 度,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該市今年共種樹(shù)16萬(wàn)棵,成活了約多少棵?
(3)園林部門(mén)決定明年從這四類(lèi)樹(shù)苗中選兩類(lèi)種植,請(qǐng)用列表法或樹(shù)狀圖求恰好選到成活率較高的兩類(lèi)樹(shù)苗的概率.(松樹(shù)、楊樹(shù)、榆樹(shù)、柳樹(shù)分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部豎有一塊宣傳牌.小明在山坡的坡腳處測(cè)得宣傳牌底部的仰角為,沿山坡向上走到處測(cè)得宣傳牌頂部的仰角為.已知山坡的坡度,米,米.
(1)求點(diǎn)距地面的高度;
(2)求大樓的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩地相距,甲、乙兩輛貨車(chē)裝滿(mǎn)貨物分別從兩地相向而行,圖中分別表示甲、乙兩輛貨車(chē)離地的距離與行駛時(shí)間之間的函數(shù)關(guān)系.請(qǐng)你根據(jù)以上信息,解答下列問(wèn)題:
(1)分別求出直線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)何時(shí)甲貨車(chē)離地的距離大于乙貨車(chē)離地的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】抗擊疫情,我們每個(gè)人都要做到講衛(wèi)生,勤洗手,科學(xué)消毒,如圖(1)是一瓶消毒洗手液. 圖(2)是它的示意圖,當(dāng)手按住頂部A下壓時(shí),洗手液瞬間從噴口B流出,路線(xiàn)從拋物線(xiàn)經(jīng)過(guò)C,E兩點(diǎn).瓶子上部分是由弧和弧組成,其圓心分別為D,C.下部分的是矩形CGHD的視圖,CG=8 cm,GH=10 cm,點(diǎn)E到臺(tái)面GH的距離為14 cm,點(diǎn)B到臺(tái)面的距離為20 cm,且B,D,H三點(diǎn)共線(xiàn).若手心距DH的水平距離為2 cm時(shí)剛好接洗手液,此時(shí)手心距水平臺(tái)面的高度為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某攔河壩橫截面原設(shè)計(jì)方案為梯形ABCD,其中AD∥BC,∠ABC=72°,為了提高攔河壩的安全性,現(xiàn)將壩頂寬度水平縮短10m,壩底寬度水平增加4m,使∠EFC=45°,請(qǐng)你計(jì)算這個(gè)攔河大壩的高度.(參考數(shù)據(jù):sin72°≈,cos72°≈,tan72°)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com