【題目】已知:△ABC是等邊三角形.
(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F.試判斷BF與CF的數(shù)量關(guān)系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).
【答案】(1)BF=CF;理由見解析;(2)40°或20°
【解析】試題分析:(1)由等邊三角形的性質(zhì)得出∠ABC=∠ACB=60°,由SAS證明△BCD≌△CBE,得出∠BCD=∠CBE,由等角對等邊即可得出BF=CF.
(2)設(shè)∠BCD=∠CBE=x,則∠DBF=60°-x,分三種情況:①若FD=FB,則∠FBD=∠FDB>∠A,證出∠FBD<60°,得出FD=FB的情況不存在;②若DB=DF,則∠FBD=∠BFD=2x,得出方程60°-x=2x,解方程即可得出結(jié)果;③若BD=BF,則∠BDF=∠BFD=2x,由三角形內(nèi)角和定理得出方程,解方程即可得出結(jié)果.
試題解析:(1)BF=CF;理由如下:
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
在△BCD和△CBE中, ,
∴△BCD≌△CBE(SAS),
∴∠BCD=∠CBE,
∴BF=CF.
(2)由(1)得:∠BCD=∠CBE,∠ACB=60°,
設(shè)∠BCD=∠CBE=x,
∴∠DBF=60°﹣x,
若△BFD是等腰三角形,分三種情況:
①若FD=FB,則∠FBD=∠FDB>∠A,
∴∠FBD=∠FDB>60°,
但∠FBD>∠ABC,
∴∠FBD<60°,
∴FD=FB的情況不存在;
②若DB=DF,則∠FBD=∠BFD=2x,
∴60°﹣x=2x,
解得:x=20°,
∴∠FBD=40°;
③若BD=BF,如圖所示:
則∠BDF=∠BFD=2x,
在△BDF中,∠DBF+∠BDF+∠BFD=180°,
∴60°﹣x+2x+2x=180°,
解得:x=40°,
∴∠FBD=20°;
綜上所述:∠FBD的度數(shù)是40°或20°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1;寫出點△A1,B1,C1的坐標(直接寫答案):A1 ;B1 ;C1 ;
(2)△A1B1C1的面積為 ;
(3)在y軸上畫出點P,使PB+PC最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測點O處測得該船位于北偏東60°的方向,則該船航行的距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB表示路燈,當身高為1.6米的小名站在離路燈1.6的D處時,他測得自己在路燈下的影長DE與身高CD相等,當小明繼續(xù)沿直線BD往前走到E點時,畫出此時小明的影子,并計算此時小明的影長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,O,B在同一條直線上,∠AOB=90°,∠AOE=∠DOB,則下列結(jié)論:①∠EOD=90°;②∠COE=∠AOD;③∠AOE+∠DOC=180;④互余的角有4對.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com