【題目】如圖,拋物線y=﹣x2+bx+c與直線AB交于A(﹣4,﹣4),B(0,4)兩點(diǎn),直線AC:y=﹣ x﹣6交y軸于點(diǎn)C.點(diǎn)E是直線AB上的動(dòng)點(diǎn),過點(diǎn)E作EF⊥x軸交AC于點(diǎn)F,交拋物線于點(diǎn)G.

(1)求拋物線y=﹣x2+bx+c的表達(dá)式;
(2)連接GB,EO,當(dāng)四邊形GEOB是平行四邊形時(shí),求點(diǎn)G的坐標(biāo);
(3)①在y軸上存在一點(diǎn)H,連接EH,HF,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),以A,E,F(xiàn),H為頂點(diǎn)的四邊形是矩形?求出此時(shí)點(diǎn)E,H的坐標(biāo);
②在①的前提下,以點(diǎn)E為圓心,EH長為半徑作圓,點(diǎn)M為⊙E上一動(dòng)點(diǎn),求 AM+CM它的最小值.

【答案】
(1)

解:∵點(diǎn)A(﹣4,﹣4),B(0,4)在拋物線y=﹣x2+bx+c上,

,

,

∴拋物線的解析式為y=﹣x2﹣2x+4;


(2)

解:設(shè)直線AB的解析式為y=kx+n過點(diǎn)A,B,

,

∴直線AB的解析式為y=2x+4,

設(shè)E(m,2m+4),

∴G(m,﹣m2﹣2m+4),

∵四邊形GEOB是平行四邊形,

∴EG=OB=4,

∴﹣m2﹣2m+4﹣2m﹣4=4,

∴m=﹣2,

∴G(﹣2,4);


(3)

解:①如圖1,

由(2)知,直線AB的解析式為y=2x+4,

∴設(shè)E(a,2a+4),

∵直線AC:y=﹣ x﹣6,

∴F(a,﹣ a﹣6),

設(shè)H(0,p),

∵以點(diǎn)A,E,F(xiàn),H為頂點(diǎn)的四邊形是矩形,

∵直線AB的解析式為y=2x+4,直線AC:y=﹣ x﹣6,

∴AB⊥AC,

∴EF為對(duì)角線,

(﹣4+0)= (a+a), (﹣4+p)= (2a+4﹣ a﹣6),

∴a=﹣2,P=﹣1,

∴E(﹣2,0).H(0,﹣1);

②如圖2,

由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),

∴EH= ,AE=2 ,

設(shè)AE交⊙E于G,取EG的中點(diǎn)P,

∴PE=

連接PC交⊙E于M,連接EM,

∴EM=EH=

= ,

=

= ,∵∠PEM=∠MEA,

∴△PEM∽△MEA,

∴PM= AM,

AM+CM的最小值=PC,

設(shè)點(diǎn)P(p,2p+4),

∵E(﹣2,0),

∴PE2=(p+2)2+(2p+4)2=5(p+2)2,

∵PE= ,

∴5(p+2)2= ,

∴p=﹣ 或p=﹣ (由于E(﹣2,0),所以舍去),

∴P(﹣ ,﹣1),

∵C(0,﹣6),

∴PC= = ,

即: AM+CM=


【解析】(1)利用待定系數(shù)法求出拋物線解析式;(2)先利用待定系數(shù)法求出直線AB的解析式,進(jìn)而利用平行四邊形的對(duì)邊相等建立方程求解即可;(3)①先判斷出要以點(diǎn)A,E,F(xiàn),H為頂點(diǎn)的四邊形是矩形,只有EF為對(duì)角線,利用中點(diǎn)坐標(biāo)公式建立方程即可;②先取EG的中點(diǎn)P進(jìn)而判斷出△PEM∽△MEA即可得出PM= AM,連接CP交圓E于M,再求出點(diǎn)P的坐標(biāo)即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)實(shí)踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡. ①作∠ABC的角平分線交AC于點(diǎn)D.
②作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE、DF.
(2)推理計(jì)算:四邊形BFDE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線x= 的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與 O的位置關(guān)系,并證明你的結(jié)論;
(3)若 O的直徑為3,cosB= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課本上,同學(xué)們已經(jīng)探究過“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線“的尺規(guī)作圖過程:
已知:直線l和l外一點(diǎn)P

求作:直線l的垂線,使它經(jīng)過點(diǎn)P.
作法:如圖:⑴在直線l上任取兩點(diǎn)A、B;
⑵分別以點(diǎn)A、B為圓心,AP,BP長為半徑畫弧,兩弧相交于點(diǎn)Q;
⑶作直線PQ.
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線l和l外一點(diǎn)P,
求作:⊙P,使它與直線l相切.(尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 , 圖①中m的值為
(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC與BD交于點(diǎn)O,過點(diǎn)O作BD的垂線分別交AD,BC于E,F(xiàn)兩點(diǎn).若AC=2 ,∠AEO=120°,則FC的長度為(
A.1
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,菱形ABCD中,AB=5cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BC﹣CD﹣DA運(yùn)動(dòng)到點(diǎn)A停止,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)到點(diǎn)B停止,它們運(yùn)動(dòng)的速度相同,設(shè)點(diǎn)P出發(fā)xs時(shí),△BPQ的面積為ycm2 , 已知y與x之間的函數(shù)關(guān)系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請根據(jù)圖中的信息,解答下列問題:

(1)當(dāng)1<x<2時(shí),△BPQ的面積(填“變”或“不變”);
(2)分別求出線段OM,曲線NK所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)當(dāng)x為何值時(shí),△BPQ的面積是5cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,∠ABD=30°,AB=4,AE⊥BD,CF⊥BD,且,E,F(xiàn)恰好是BD的三等分點(diǎn),又M、N分別是AB,CD的中點(diǎn),那么四邊形MENF的面積是

查看答案和解析>>

同步練習(xí)冊答案