【題目】如圖:直線l:y=﹣x,點A1的坐標為(﹣1,0),過點A1作x軸的垂線交直線l于點B1 , 以原點O為圓心,OB1長為半徑畫弧交x軸負半軸于點A2 , 再過點A2作x軸的垂線交直線l于點B2 , 以原點O為圓心,OB2長為半徑畫弧交x軸負半軸于點A3…按此作法進行去,點A2016的坐標為( )

A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)

【答案】C
【解析】解:已知點A1坐標為(﹣1,0),且點B1在直線y=﹣x上,可知B1點坐標為(﹣1,1),
由題意可知OB1=OA2= ,故A2點坐標為(﹣ ,0),
同理可求的B2點坐標為(﹣ ),
按照這種方法逐個求解便可發(fā)現(xiàn)規(guī)律,A2016點坐標為(﹣( 2016 , 0),即(﹣21008 , 0),
故選:C.
【考點精析】掌握數(shù)與式的規(guī)律是解答本題的根本,需要知道先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結合尋找規(guī)律.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探究題
(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E,使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷.

(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連結EF.請判斷BE+CF與EF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個圖形中一共有6個小圓圈,第②個圖形中一共有9個小圓圈,第③個圖形中一共有12個小圓圈,…,按此規(guī)律排列,則第⑩個圖形中小圓圈的個數(shù)為( )

A. 24 B. 27 C. 30 D. 33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF②DB=DC;③AD⊥BC④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若∠A=15°,AB=BC=CD=DE=EF,則∠DEF等于__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動點(與點B,C不重合)連接AP,延長BC至點Q,使 CQCP,過點QQHAP于點H,交AB于點M

(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;

(2)在(1)的條件下,過點MMEQB于點E,試證明 PC ME 之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一張長方形紙片,,).將這張紙片沿著過點的折痕翻折,使點落在邊上的點,折痕交 于點,將折疊后的紙片再次沿著另一條過點的折痕翻折,點恰好與點重合,此時折痕交于點

1)在圖中確定點、點和點的位置;

2)聯(lián)結 等于多少°;

3)用含有、的代數(shù)式表示線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值.

(1)(2x2y4xy2)(xy2x2y),其中x=-1y2;

(2)2x2[3(x2xy)2y2]2(x2xy2y2),其中x,y滿足|x|(y1)20.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某街道改建工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書. 從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天可以完成.

(1)求甲、乙兩隊單獨完成這項工程各需多少天?

(2)已知甲隊每天的施工費用為0.84萬元,乙隊每天的施工費用為0.56萬元,工程預算的施工費用為50萬元. 為縮短工期以減少對住戶的影響,擬安排甲、乙兩隊合作完成這項工程,則工程預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.

查看答案和解析>>

同步練習冊答案