某市舉行釣魚比賽,如圖,選手甲釣到了一條大魚,魚竿被拉彎近似可看作以A為最高點的一條拋物線,魚線AB長6m,魚隱約在水面了,估計魚離魚竿支點有8m,此時魚竿魚線呈一個平面,且與水平面夾腳α恰好為60°,以魚竿支點為原點,則魚竿所在拋物線的解析式為______.
過點A作AC⊥OB,交OB于點C,
∵AB=6米,OB=8米,α=60°,
∴AC=ABsin∠α=3
3
米,BC=ACcos∠α=3米,
∴OC=OB-BC=5米,
故可得點A的坐標為(5,3
3
),
設(shè)函數(shù)解析式為y=a(x-5)2+3
3

又∵函數(shù)經(jīng)過原點,
∴a(0-5)2+3
3
=0,
解得:a=-
3
3
25

故函數(shù)解析為:y=-
3
3
25
(x-5)2+3
3

故答案為:y=-
3
3
25
(x-5)2+3
3
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(-1,0),點B的坐標為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點,記為拋物線l2,求拋物線l2的函數(shù)表達式;
(2)設(shè)拋物線l2的頂點為C,請你判斷y軸上是否存在點K,使得∠BKC=90°,若存在,求出K點坐標,若不存在,請說明理由;
(3)拋物線l2與y軸交于點D,點P是線段BD上的一個動點,過點P,作y軸的平行線,交拋物線l2于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點M在第一象限,拋物線與x軸相交于A、B兩點(點A在點B的左邊),與y軸交與點C,O為坐標原點,如果△ABM是直角三角形,AB=2,OM=
5

(1)求點M的坐標;
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對稱軸上是否存在點P,使得△PAC為直角三角形?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
4
x2+bx+c
與x軸交于A、B,與y軸交于點C,連結(jié)AC、BC,D是線段OB上一動點,以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF.若S△OBC=8,AC=BC
(1)求拋物線的解析式;
(2)求證:BF⊥AB;
(3)求∠FBE;
(4)當D點沿x軸正方向移動到點B時,點E也隨著運動,則點E所走過的路線長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=-
3
x+
3
與x軸交于點A,與y軸交于點B,C是x軸上一點,如果∠ABC=∠ACB,
求:(1)點C的坐標;
(2)圖象經(jīng)過A、B、C三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

丁丁推鉛球的出手高度為1.6m,在如圖所示的拋物線y=-0.1(x-k)2+2.5上,求鉛球的落點與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

學(xué)校大門如圖所示是一拋物線形水泥建筑物,大門的地面寬度為8米,兩側(cè)距地4米高處各有一掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為6米,則該校門的高度(精確到0.1米)為( 。
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D的坐標為(-2,0).問:直線AC上是否存在點F,使得△ODF是等腰三角形?若存在,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一位籃球運動員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案