【題目】在Rt△ABC中,∠C=90°,下列結(jié)論:(1)sinA<1;(2)若A>60°,則cosA>;(3)若A>45°,則sinA>cosA.其中正確的有( 。
A. 0個 B. 1個 C. 2個 D. 3個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程x4﹣6x2+5=0,這是一個一元四次方程,根據(jù)該方程的特點(diǎn),通常解法是:設(shè)x2=y(tǒng),則原方程變形為關(guān)于y的方程y2﹣6y+5=0①,解得y1=1,y2=5,從而x2=1,x=±1或x2=5,x=±,所以原方程有四個根x1=,x2=﹣,x3=1,x4=﹣1.
(1)填空:由原方程得到方程①的過程中,利用 法達(dá)到降次的目的,體現(xiàn)了 的數(shù)學(xué)思想.
(2)解方程(x+1)(x+2)(x+3)(x+4)=120.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,在所給直角坐標(biāo)系中解答下列問題:
(1)分別寫出點(diǎn)A的坐標(biāo) ,點(diǎn)B的坐標(biāo) .
(2)作出△ABC關(guān)于原點(diǎn)成中心對稱的△A1B1C1;
(3)已知點(diǎn)M的坐標(biāo)為(1,﹣4),請你在x軸上找一點(diǎn)P,使得PM+PB的值最小,并直接寫出點(diǎn)P的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“小組合作制”正在七年級如火如茶地開展,旨在培養(yǎng)七年級學(xué)生的合作學(xué)習(xí)的精神和能力,學(xué)會在合作中自主探索.?dāng)?shù)學(xué)課上,吳老師在講授“角平分線”時,設(shè)計了如下四種教學(xué)方法:①教師講授,學(xué)生練習(xí);②學(xué)生合作交流,探索規(guī)律;③教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生練習(xí);④教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生合作交流,吳老師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到七年級所有同學(xué)手中要求每位同學(xué)選出自己最喜歡的一種,然后吳老師從所有調(diào)查問卷中隨機(jī)抽取了若干份調(diào)查問卷作為樣本,統(tǒng)計如下:
序號①②③④代表上述四種教學(xué)方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請回答問題:
(1)在后來的抽樣調(diào)查中,吳老師共抽取 位學(xué)生進(jìn)行調(diào)查;并將條形統(tǒng)計圖補(bǔ)充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級學(xué)生中選擇④種教學(xué)方法的有540人,請估計七年級總?cè)藬?shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=-x2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(-3,0)、B(1,0),頂點(diǎn)為C.
(1)求該二次函數(shù)的解析式和頂點(diǎn)C的坐標(biāo);
(2)如圖,過B、C兩點(diǎn)作直線,并將線段BC沿該直線向下平移,點(diǎn)B、C分別平移到點(diǎn)D、E處.若點(diǎn)F在這個二次函數(shù)的圖象上,且△DEF是以EF為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);
(3)試確定實數(shù)p,q的值,使得當(dāng)p≤x≤q時,P≤y≤ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機(jī)飛行的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時,求y的取值范圍;
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為8cm,動點(diǎn)P從點(diǎn)A出發(fā)以秒的速度沿AC方向向終點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)C出發(fā)以秒的速度沿CB方向向終點(diǎn)B運(yùn)動,過點(diǎn)P、Q分別作邊AB的垂線段PM、QN,垂足分別為點(diǎn)M、設(shè)P、Q兩點(diǎn)運(yùn)動時間為t秒,四邊形MNQP的面積為.
為何值時,為等邊三角形?
是否存在某一時刻t,使四邊形MNQP的面積S等于的面積的?若存在,求出此時t的值;若不存在,說明理由.
連接PN、QM交于點(diǎn)D,是否存在某一時刻t,使?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com