【題目】如圖,在平面直角坐標系中,點為坐標原點.已知:拋物線經(jīng)過點和點

)試判斷該拋物線與軸交點的情況.

)平移這條拋物線,使平移后的拋物線經(jīng)過點,且與軸交于點,同時滿足以, 為頂點的三角形是等腰直角三角形.請你寫出平移過程,并說明理由.

【答案】1)拋物線與軸有兩個交點;(2將原拋物線向右平移個單位,再向下平移個單位即可.

【解析】試題分析:1)把P、Q兩點的坐標代入拋物線解析式可求得a、b的值,可求得拋物線解析式,再根據(jù)一元二次方程根的判別式,可判斷拋物線與x軸的交點情況;

2)利用A點坐標和等腰三角形的性質(zhì)可求得B點坐標,設(shè)出平移后的拋物線的解析式,把A、B的坐標代入可求得平移后的拋物線的解析式,比較平移前后拋物線的頂點的變化即可得到平移的過程.

解:)將, 代入中得

解得:

∴拋物線為

∴拋物線與軸有兩個交點.

一個交在軸正半軸,一個交在軸負半軸,且正半軸交點離原點更遠.

是等腰直角三角形, ,點軸上,

點坐標為

可設(shè)平移后的拋物線解析式為

①當拋物線過點, 時,代入可得.

,解得

∴平移后的拋物線為

∴該拋物線的頂點坐標為,而原拋物線頂點坐標為

∴將原拋物線向右平移個單位,再向上平移個單位即可.

②當拋物線過點, 時,代入可得.

,解得

∴平移后的拋物線為

∴該拋物線的頂點坐標為,而原拋物線頂點坐標為

∴將原拋物線向右平移個單位,再向下平移個單位即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點分別在軸和軸的正半軸上,且滿足.

(1)求點、點的坐標;

(2)若點從點出發(fā),以每秒1個單位長度的速度沿射線CB運動,連結(jié)AP,設(shè)的面積為,點的運動時間為秒,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)(2)的條件下,是否存在點,使得以點、、為頂點的三角形與相似,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“如圖1,在Rt△ABC中,∠ACB=90°,CD是△ABC的高,則△ACD與△CBD相似嗎?”于是,學生甲發(fā)現(xiàn)CD2=AD·BD也成立.

問題1:請你證明CD2=AD·BD;

學生乙從CD2=AD·BD中得出:可以畫出兩條已知線段的比例中項.

問題2:已知兩條線段AB、BCx軸上,如圖2:請你用直尺(無刻度)和圓規(guī)作出這兩條線段的比例中項.要求保留作圖痕跡,不要寫作法,最后指出所要作的線段.

學生丙也從CD2=AD·BD中悟出了矩形與正方形的等積作法.

問題3:如圖3,已知矩形ABCD,請你用直尺(無刻度)和圓規(guī)作出一個正方形BMNP,使得S正方形BMNP=S矩形ABCD.要求:保留作圖痕跡;簡要寫出作圖每個步驟的要點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為的兩個正方形并排放在一起,連結(jié)并延長交于點,交于點,則

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,.點從點出發(fā)沿路徑向終點運動;點點出發(fā)沿路徑向終點運動.點分別以13的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過,.則點運動時間等于____________時,全等。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FHABH,求證:CDAB.請將下面的推理過程補充完整.

證明:FHAB(已知)

∴∠BHF=   °.(   

∵∠1=∠ACB(已知)

DEBC   

∴∠2=   .(   

∵∠2=∠3(已知)

∴∠3=   .(   

CDFH   

∴∠BDC=∠BHF=   °.(   

CDAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DFBE.求證:CECF;

2)如圖2,在正方形ABCD中,EAB上一點,GAD上一點,如果∠GCE45°,請你利用(1)的結(jié)論證明:GEBEGD

3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBCEAB上一點,且∠DCE45°,BE4,DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙P經(jīng)過x軸上一點C,與y軸分別相交于AB兩點,連接AP并延長分別交⊙P、x軸于點D、點E,連接DC并延長交y軸于點F.若點F的坐標為,點D的坐標為

(1)求證:DC=FC;

(2)判斷⊙Px軸的位置關(guān)系,并說明理由;

(3)求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

同步練習冊答案