【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx和雙曲線在第一象限相交于點(diǎn)A(1,2),點(diǎn)B在y軸上,且AB⊥y軸.有一動(dòng)點(diǎn)P從原點(diǎn)出發(fā)沿y軸以每秒1個(gè)單位的速度向y軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(t>0),過點(diǎn)P作PD⊥y軸,交直線OA于點(diǎn)C,交雙曲線于點(diǎn)D.
(1)求直線y=kx和雙曲線的函數(shù)關(guān)系式;
(2)設(shè)四邊形CDAB的面積為S,當(dāng)P在線段OB上運(yùn)動(dòng)時(shí)(P不與B點(diǎn)重合),求S與t之間的函數(shù)關(guān)系式;
(3)在圖中第一象限的雙曲線上是否存在點(diǎn)Q,使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)t的值和Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),;(2);(3)時(shí),Q;時(shí),Q;時(shí),;
【解析】
(1)把點(diǎn)A的坐標(biāo)代入兩個(gè)函數(shù)的解析式求出k和k′的值即可得到兩個(gè)函數(shù)的解析式;
(2)由題意易得AB=1,OB=2,OP=t,結(jié)合(1)中所得兩個(gè)函數(shù)的解析式可得:PC=,PD=,BP=,由此可得當(dāng)點(diǎn)P在線段AB上(不與點(diǎn)B重合)時(shí),CD=PD-PC=,這樣S=S梯形ABCD=(AB+CD)·BP即可求得S與t間的函數(shù)關(guān)系式了;
(3)根據(jù)題意,分①CD在AB的下方,AB∥CD,且AB=CD,點(diǎn)Q與點(diǎn)D重合;②CD在AB上方,AB∥CD,且AB=CD,點(diǎn)Q與點(diǎn)D重合;③CD在AB下方,BQ∥AC,BQ=AC;根據(jù)這三種情況畫出對(duì)應(yīng)的圖形(圖2和圖3)結(jié)合已知條件進(jìn)行分析解答即可.
(1)把A(1,2)代入y=kx和y=,
k=2,k′=2
∴直線y=kx的函數(shù)關(guān)系式是y=2x,雙曲線y=的函數(shù)關(guān)系式是y=;
(2)由題意可得:AB=1,OB=2,OP=t,
∴PC=,PD=,BP=2-t,
∴當(dāng)CD在AB下方時(shí),CD=PD-PC=-.
∴S= (1+-)(2-t)= (0<t<2);
(3)存在以下3種情形,具體如下:
①當(dāng)CD在AB的下方,AB∥CD,且AB=CD,點(diǎn)Q與點(diǎn)D重合(如圖2)時(shí),四邊形ABCQ是平行四邊形,
∵CD=PD-PC=-=1,
∴,解得(舍去),
∴此時(shí)PD==,OP=t=-1,
∴當(dāng)t=-1時(shí),存在Q(,-1)使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形;
②當(dāng)CD在AB的上方,AB∥CD,且AB=CD,點(diǎn)Q與點(diǎn)D重合(如圖2)時(shí),四邊形ACBQ是平行四邊形,
∵CD=PC-PD,
∴,解得:(舍去),
∴此時(shí)PD==,OP=t=+1,
∴當(dāng)t=+1時(shí),存在Q(,+1)使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形;
③當(dāng)BQ∥AC,BQ=AC,且CD在AB下方時(shí)(如圖3),此時(shí)四邊形ACBQ是平行四邊形,
此時(shí)Q點(diǎn)的坐標(biāo)仍為(,+1),
過C作CG⊥AB交AB于G,過Q作QH⊥y軸交y軸于H,
易證:△ACG≌△QBH,
∴CG=BH=BP,,
∴OP=2OB-OH=4-(+1)=3-,
∴當(dāng)t=3-時(shí),存在Q(,+1)使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式:
(2)求△ABC的面積;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使△ABM周長(zhǎng)最短?若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
某管道由甲、乙兩工程隊(duì)單獨(dú)施工分別需要30天、20天.
(1)如果兩隊(duì)從管道兩端同時(shí)施工,需要多少天完工?
(2)又知甲隊(duì)單獨(dú)施工每天需付200元施工費(fèi),乙隊(duì)單獨(dú)施工每天需付280元施工費(fèi),那么是由甲隊(duì)單獨(dú)施工,還是由乙隊(duì)單獨(dú)施工,還是由兩隊(duì)同時(shí)施工?請(qǐng)你按照少花錢多辦事的原則,設(shè)計(jì)一個(gè)方案,并通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),AC是對(duì)角線,過點(diǎn)B作BG∥AC交DA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CE∥AF;
(2)若∠G=90°,求證:四邊形CEAF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在AB直線一側(cè)C、D兩點(diǎn),在AB上找一點(diǎn)P,使C、D、P三點(diǎn)組成的三角形的周長(zhǎng)最短,找出此點(diǎn)并說明理由.
(2)如圖2,在∠AOB內(nèi)部有一點(diǎn)P,是否在OA、OB上分別存在點(diǎn)E、F,使得E、F、P三點(diǎn)組成的三角形的周長(zhǎng)最短,找出E、F兩點(diǎn),并說明理由.
(3)如圖3,在∠AOB內(nèi)部有兩點(diǎn)M、N,是否在OA、OB上分別存在點(diǎn)E、F,使得E、F、M、N,四點(diǎn)組成的四邊形的周長(zhǎng)最短,找出E、F兩點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,∠D=∠C,添加下列哪個(gè)條件后,仍不能使△ADO≌△BCO的是( 。
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
若A,B,C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離的2倍,我們就稱點(diǎn)C是(A,B)的優(yōu)點(diǎn).
例如,如圖①,點(diǎn)A表示的數(shù)為﹣1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(A,B)的優(yōu)點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是(A,B)的優(yōu)點(diǎn),但點(diǎn)D是(B,A)的優(yōu)點(diǎn).
(知識(shí)運(yùn)用)
如圖②,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣2,點(diǎn)N所表示的數(shù)為4.
(1)數(shù) 所表示的點(diǎn)是(M,N)的優(yōu)點(diǎn);
(2)如圖③,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以4個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的優(yōu)點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)動(dòng)時(shí)心跳速率通常和人的年齡有關(guān)。用a表示一個(gè)人的年齡,用b表示正常情況下這個(gè)人在運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù),則.
(1)正常情況下,一個(gè)14歲的少年運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù)是多少?
(2)當(dāng)一個(gè)人的年齡增加10歲時(shí),他運(yùn)動(dòng)時(shí)承受的每分鐘心跳最高次數(shù)有何變化?變化次數(shù)是多少?
(3)一個(gè)45歲的人運(yùn)動(dòng)時(shí),10秒心跳次數(shù)為22次,請(qǐng)問他有危險(xiǎn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCO放在直角坐標(biāo)系中,其中頂點(diǎn)B的坐標(biāo)為(10, 8),E是BC邊上一點(diǎn)將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=的圖象與邊AB交于點(diǎn)F, 則線段AF的長(zhǎng)為( )
A. B. 2 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com