如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.

(1)求點(diǎn)B的坐標(biāo).

(2)求證:四邊形ABCE是平行四邊形.

(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).


【解析】(1)∵∠AOB=30°,OB=8,

∴AB=4,OA=4,∴B(4,4).

(2)∵△OBC是等邊三角形,∴OC=OB=8.

∵D點(diǎn)為OB的中點(diǎn),∴OD=4.

又∵AD是Rt△OAB斜邊的中線,

∴AD=OB=OD,

∴∠ODA=180°-2×30°=120°,∴∠EDO=60°.

又∠EOD=60°,∴△OED為等邊三角形,

∴OE=4,∴E(0,4),

∴CE=4,CE=AB.又∵CE∥AB,

∴四邊形ABCE是平行四邊形.

(3)∵GA=GC,∴GA2=GC2.

即OG2+OA2=(OC-OG)2,OG2+(4)2=(8-OG)2,∴OG=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知函數(shù)y=(m-1)x|m|-2,當(dāng)m為何值時(shí),正比例函數(shù)y隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


我市某校九年級(jí)一班學(xué)生參加畢業(yè)體考的成績(jī)統(tǒng)計(jì)如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息完成后面的問(wèn)題:

(1)該班共有多少名學(xué)生?

(2)求該班學(xué)生體考成績(jī)的眾數(shù)和男生體考成績(jī)的中位數(shù).

(3)若女生體考成績(jī)?cè)?7分及其以上,男生體考成績(jī)?cè)?8分及其以上被認(rèn)定為體尖生,則該班共有多少名體尖生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一個(gè)樣本為1,3,2,2,a,b,c.已知這個(gè)樣本的眾數(shù)為3,平均數(shù)為2,那么這個(gè)樣本的方差為    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在四邊形ABCD中,AB∥CD,請(qǐng)你添加一個(gè)條件,使得四邊形ABCD成為平行四邊形,你添加的條件是    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,在四邊形ABCD中,P為對(duì)角線BD的中點(diǎn),E,F分別為AB,CD的中點(diǎn),AD=BC,∠PEF=18°,則∠PFE的度數(shù)是   .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的長(zhǎng)為(  )

A.2              B.4              C.4         D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊的正方形ACEF的周長(zhǎng)為(  )

A.14      B.15

C.16      D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,有兩個(gè)長(zhǎng)度相同的滑梯靠在一面墻上.已知左邊滑梯的高度AC與右邊滑梯水平方向的長(zhǎng)度DF相等,則這兩個(gè)滑梯與地面夾角∠ABC與∠DFE的度數(shù)和是( 。

A.60°

B.90°

C.120°

D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案