【題目】在平面直角坐標系中,已知直線軸、軸分別交于兩點,點軸上一動點,要使點關于直線的對稱點剛好落在軸上,則此時點的坐標是(

A.B.C.D.

【答案】B

【解析】

CCDABD,先求出A,B的坐標,分別為(40),(0,3),得到AB的長,再根據(jù)折疊的性質得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,則DB=5-4=1,BC=3-n,在RtBCD中,利用勾股定理得到n的方程,解方程求出n即可.

CCDABD,如圖,

對于直線

x=0,得y=3;

y=0,x=4,

A4,0),B0,3),即OA=4,OB=3

AB=5,

又∵坐標平面沿直線AC折疊,使點B剛好落在x軸上,

AC平分∠OAB,

CD=CO=n,則BC=3-n,

DA=OA=4,

DB=5-4=1,

RtBCD中,DC2+BD2=BC2,

n2+12=3-n2,解得n=,

∴點C的坐標為(0,).

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、C分別是線段A1B、B1C、C1A的中點,若△A1BlC1的面積是14,那么△ABC的面積是( 。

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BD是角平分線,且∠ACB60°,∠ADB97°,

(1)求∠A

(2) 在圖中畫出ABCAB上的高CE.并求出∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2015桂林)全民閱讀深入人心,好讀書,讀好書,讓人終身受益.為滿足同學們的讀書需求,學校圖書館準備到新華書店采購文學名著和動漫書兩類圖書.經了解,20本文學名著和40本動漫書共需1520元,20本文學名著比20本動漫書多440元(注:所采購的文學名著價格都一樣,所采購的動漫書價格都一樣).

1)求每本文學名著和動漫書各多少元?

2)若學校要求購買動漫書比文學名著多20本,動漫書和文學名著總數(shù)不低于72本,總費用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察后填空:①(x1)(x+1)=x21; ②(x1)(x2+x+1)=x31; ③(x1)(x3+x2+x+1)=x41.

1)填空:(x1)(x99+x98+x97+…+x+1)=   

2)請利用上面的結論計算:

①(﹣250+(﹣249+(﹣248+…+(﹣2)+1; ②若x3+x2+x+10,求x2016的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為中垂三角形,例如圖1,圖2,圖3中,AF,BEABC的中線,AFBE,垂足為P,像ABC這樣的三角形均為中垂三角形,設BC=a,AC﹣bAB=c

【特例探索】

1)如圖1,當∠ABE=45°c=2時,a=   b=   ;如圖2,當∠ABE=30°,c=4時,a=   ,b=   ;

【歸納證明】

2)請你觀察(1)中的計算結果,猜想a2,b2c2三者之間的關系,用等式表示出來,請利用圖3證明你發(fā)現(xiàn)的關系式;

【拓展應用】

3)如圖4,在ABCD中,點EF,G分別是AD,BC,CD的中點,BEEG,AD=2AB=3.求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC,BD交于點O,折疊正方形ABCD,使AB邊落在AC上,點B落在點H處,折痕AE分別交BC于點E,交BO于點F,連結FH,則下列結論1AD=DF;(2=;(3=1;(4)四邊形BEHF為菱形.正確的有幾個(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經》中就有若勾三,股四,則弦五的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是把圖1放入長方形內得到的,AB=3,AC=4,點D,EF,GH,I都在長方形KLMJ的邊上,則長方形KLMJ的面積為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結AD并延長,與BC相交于點E。

(1)若BC=,CD=1,求⊙O的半徑;

(2)取BE的中點F,連結DF,求證:DF是⊙O的切線。

查看答案和解析>>

同步練習冊答案