【題目】如圖,在正方形ABCD中,對角線AC,BD交于點(diǎn)O,折疊正方形ABCD,使AB邊落在AC上,點(diǎn)B落在點(diǎn)H處,折痕AE分別交BC于點(diǎn)E,交BO于點(diǎn)F,連結(jié)FH,則下列結(jié)論1AD=DF;(2=;(3=1;(4)四邊形BEHF為菱形.正確的有幾個( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】試題解析:(1)∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點(diǎn)B恰好與AC上的點(diǎn)H重合,

AD=DF,

(1)正確;

(2)∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點(diǎn)B恰好與AC上的點(diǎn)H重合,

∴△ABE≌△AEH

BE=EH,

(2)正確;

(3)∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點(diǎn)B恰好與AC上的點(diǎn)H重合,

(4)∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點(diǎn)B恰好與AC上的點(diǎn)H重合,

BE=EHBF=FH,

又∵,

∴∠AEB=EFH

又∵∠AEB=AFH,

∴∠AFH=EFH

BE=EH=FB=BH,

∴四邊形BEHF是菱形,

(4)正確;

(3)正確.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn),PEBC,PFCD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,邊長為的等邊的項點(diǎn)都在軸上,頂點(diǎn)在第二象限內(nèi),經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到

1沿軸向右平移得到,則平移的距離是 個長度單位;關(guān)于直線對稱,則對稱軸是 ,繞原點(diǎn)順時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)角度至少是 度;

2)連接,交于點(diǎn),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線軸、軸分別交于兩點(diǎn),點(diǎn)軸上一動點(diǎn),要使點(diǎn)關(guān)于直線的對稱點(diǎn)剛好落在軸上,則此時點(diǎn)的坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達(dá)式為,與軸交點(diǎn)為,與軸交點(diǎn)為

1)求兩點(diǎn)的坐標(biāo);

2)若點(diǎn)為線段上的一個動點(diǎn),為坐標(biāo)原點(diǎn),是否存在點(diǎn),使的值最?若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,EGBC,垂足分別為D、GAD平分∠BAC,求證:∠E=4.

證明:∵ADBCEGBC(已知)

ADEG( )

∴∠2=3( )

1= (兩直線平行,同位角相等)

AD平分∠BAC(已知)

∴∠1=2( )

∴∠E=3( )

∵∠3=4( )

∴∠E=4(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),對函數(shù)y=|2x﹣1|的圖象和性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完成:

(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是   

(2)已知:

當(dāng)x=時,y=|2x﹣1|=0;

當(dāng)x>時,y=|2x﹣1|=2x﹣1

當(dāng)x<時,y=|2x﹣1|=1﹣2x;

顯然,均為某個一次函數(shù)的一部分.

(3)由(2)的分析,取5個點(diǎn)可畫出此函數(shù)的圖象,請你幫小東確定下表中第5個點(diǎn)的坐標(biāo)(m,n),其中m=   ;n=   ;:

x

﹣2

0

1

m

y

5

1

0

1

n

(4)在平面直角坐標(biāo)系xOy中,作出函數(shù)y=|2x﹣1|的圖象;

(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),射線軸,直線交線段于點(diǎn),交軸于點(diǎn),是射線上一點(diǎn).若存在點(diǎn),使得恰為等腰直角三角形,則的值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動了4秒時,描出此時P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動過程中,當(dāng)點(diǎn)Px軸距離為5個單位長度時,求點(diǎn)P移動的時間.

查看答案和解析>>

同步練習(xí)冊答案