【題目】如圖,已知是的直徑,是的弦,弦于點,交于點,過點的直線與的延長線交于點,.
求證:是的切線;
當(dāng)點在劣弧上運動時,其他條件不變,若.求證:點是的中點;
在滿足的條件下,,,求的長.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
(1)連OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,則∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根據(jù)切線的判定定理即可得到結(jié)論;
(2)連OG,由BG2=BFBO,即BG:BO=BF:BG,根據(jù)三角形相似的判定定理得到△BGO∽△BFG,由其性質(zhì)得到∠OGB=∠BFG=90°,然后根據(jù)垂徑定理即可得到點G是BC的中點;
(3)連OE,由ED⊥AB,根據(jù)垂徑定理得到FE=FD,而AB=10,ED=4,得到EF=2,OE=5,在Rt△OEF中利用勾股定理可計算出OF,從而得到BF,然后根據(jù)BG2=BFBO即可求出BG.
證明:連,如圖,
∵,
∴,
又∵,
∴,
而,,
∴,即,
∴是的切線;
證明:連,如圖,
∵,即,
而,
∴,
∴,
即,
∴,即點是的中點;解:連,如圖,
∵,
∴,
而,,
∴,,
在中,,
∴,
∵,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線AB分別交x軸,y軸于A(a,0),B(0,b),且滿足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)點P在直線AB的右側(cè);且∠APB=45°,
①若點P在x軸上(圖1),則點P的坐標(biāo)為 ;
②若△ABP為直角三角形,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點的坐標(biāo)分別為,,。
(1)請畫出關(guān)于軸對稱后得到的;
(2)直接寫出點,點,點的坐標(biāo);
(3)在軸上尋找一個點,使的周長最小,并直接寫出的周長的最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點O,直角∠MPN的頂點P與點O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是_____.
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;(4)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①三點確定一個圓;②平分弦的直徑必垂直于這條弦;③圓周角等于圓心角的一半;④等弧所對的圓心角相等;⑤各角相等的圓內(nèi)接多邊形是正多邊形.其中正確的有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,
(1)連接CD、BD,求證:△CDF≌△BDE;
(2)若AE=5,AC=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商廈今年一月份銷售額為萬元,二月份由于種種原因,經(jīng)營不善,銷售額下降,以后加強改進管理,經(jīng)減員增效,大大激發(fā)了全體員工的積極性,月銷售額大幅度上升,到四月份銷售額猛增到萬元,求三、四月份平均每月增長的百分率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com