【題目】平面直角坐標系xOy中,點A、B分別在函數(shù)y1=(x>0),與y2=﹣(x<0)的圖象上,A、B的橫坐標分別為a、b.(a、b為任意實數(shù))
(1)若AB∥x軸,求△OAB的面積;
(2)作邊長為2的正方形ACDE,使AC∥x軸,點D在點A的左上方,那么,當a≥3時,CD邊與函數(shù)y1=(x>0)的圖象有交點,請說明理由.
【答案】(1)3;(2)見解析.
【解析】
(1)點A、B的坐標分別為(a,)、(b,﹣),AB∥x軸,則,即可求解;
(2)設(shè)點A(a,),則點C(a﹣2,),點D(a﹣2,),點F(a﹣2,),驗證2﹣FC≥0,即可求解
解:(1)A、B的橫坐標分別為a、b,
則點A、B的坐標分別為(a,)、(b,﹣),
AB∥x軸,則,
則a=﹣b,AB=a﹣b=2a,
S△OAB=×2a×=3;
(2)如圖所示:
∵a≥3,AC=2,則直線CD在y軸右側(cè)且平行于y軸,CD與函數(shù)圖象有交點,設(shè)交點為F,
設(shè)點A(a,),則點C(a﹣2,),點D(a﹣2,),點F(a﹣2,)
則2﹣FC=2﹣+=,
∵a≥3,∴a﹣3≥0,a﹣2>0,
故2﹣FC≥0,FC≤2,
即點F在線段CD上,
即當a≥3時,CD邊與函數(shù)y1=(x>0)的圖象有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)請判斷BD、CE有何大小、位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,將沿著對角線對折得到.
(1)如圖,交于點,于點,求的長.
(2)如圖,再將沿著對角線對折得到,順次連接、、、,求:四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛相約周末到雪蓮大劇院看演出,他們的家分別距離劇院1200m和2000m,兩人分別從家中同時出發(fā),已知小明和小剛的速度比是3:4,結(jié)果小明比小剛提前4min到達劇院.求兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了開展“陽光體育運動”,計劃購買籃球與足球共個,已知每個籃球的價格為元,每個足球的價格為元
(1)若購買這兩類球的總金額為元,求籃球和足球各購買了多少個?
(2)元旦期間,商家給出藍球打九折,足球打八五折的優(yōu)惠價,若購買這種籃球與足球各個,那么購買這兩類球一共需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AC=4,BC=8,O是AB邊的中點,P是AC邊上的動點,OE⊥OP交BC邊于點E,連接PE.
(1)如圖①,當P與C重合時,線段PE的長為___________;
(2)如圖②,當P在AC邊上運動時,
①探究:線段PA,PE,EB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
②若設(shè)PA=,PE2=y,求y與x之間的函數(shù)關(guān)系式及線段PE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,4)是直角坐標系 y 軸上一點,動點 P 從原點 O 出發(fā),沿 x 軸正半軸運動,速度為每秒 1 個單位長度,以P為直角頂點在第一象限內(nèi)作等腰Rt△APB.設(shè)P點的運動時間為 t 秒.
(1)若 AB∥x 軸,求 t 的值;
(2)若OP=OA,求B點的坐標.
(3)當 t=3 時,x 軸上是否存在有一點 M,使得以 M、P、A 為頂點的三角形是等腰三角形,請直接寫出點 M 的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com