(2012•西城區(qū)模擬)若點(x1,y1)、(x2,y2)都是反比例函數(shù)y=-
1x
圖象上的點,且x1<0<x2,則y1,y2的大小關(guān)系是
y2<y1
y2<y1
分析:本題根據(jù)函數(shù)的增減性和x1<0<x2確定出點(x1,y1)、(x2,y2)所在的象限,即可判斷出y1,y2的大小關(guān)系.
解答:解:∵點(x1,y1)、(x2,y2)都是反比例函數(shù)y=-
1
x
圖象上的點,
且x1<0<x2
則(x1,y1)位于第二象限,(x2,y2)位于第四象限,
∴y1,y2的大小關(guān)系是y2<y1
故答案為:y2<y1
點評:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,要學(xué)會判斷點的坐標(biāo)大小,關(guān)鍵是根據(jù)函數(shù)的增減性和點的坐標(biāo)的特點確定出點所在的象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程組
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知:如圖,A點坐標(biāo)為(-
32
,0)
,B點坐標(biāo)為(0,3).
(1)求過A,B兩點的直線解析式;
(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設(shè)m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當(dāng)E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學(xué)采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學(xué)翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)將代數(shù)式x2-6x+10化為(x-m)2+n的形式(其中m,n為常數(shù)),結(jié)果為
(x-3)2+1
(x-3)2+1

查看答案和解析>>

同步練習(xí)冊答案