【題目】五一小長假,李軍與張明相約去寧波旅游,李軍從溫嶺北上沿海高速,同時(shí)張明從玉環(huán)蘆浦上沿海高速,溫嶺北與玉環(huán)蘆浦相距44千米,兩人約好在三門服務(wù)區(qū)集合,李軍由于離三門近,行駛了1.2小時(shí)先到達(dá)三門服務(wù)站等候張明,張明走了1.4小時(shí)到達(dá)三門服務(wù)站。在整個(gè)過程中,兩人均保持各自的速度勻速行駛,兩人相距的路程y千米與張明行駛的時(shí)間x小時(shí)的關(guān)系如圖所示,下列說法錯(cuò)誤的是( )
A.李軍的速度是80千米/小時(shí)
B.張明的速度是100千米/小時(shí)
C.玉環(huán)蘆浦至三門服務(wù)站的路程是140千米
D.溫嶺北至三門服務(wù)站的路程是44千米
【答案】D
【解析】
利用函數(shù)圖像,可知1.2小時(shí)張明走了20千米,利用路程÷時(shí)間=速度,就可求出張明的速度,從而可求出李軍的速度,可對(duì)A,B作出判斷;再利用路程=速度×時(shí)間,就可求出玉環(huán)蘆浦至三門服務(wù)站的路程和溫嶺北至三門服務(wù)站的路程,可對(duì)C,D作出判斷.
解:∵1.2小時(shí),他們兩人相距20千米,張明走了1.4小時(shí)到達(dá)三門服務(wù)站,即兩人相距路程為0千米,
∴張明的速度為:20÷(1.4-1.2)=100千米/時(shí),故B正確;
李軍的速度為:100-(44-20)÷1.2=100-20=80千米/時(shí),故A正確;
∴ 玉環(huán)蘆浦至三門服務(wù)站的路程為100×1.4=140千米。故C正確;
∴溫嶺北至三門服務(wù)站的路程為1.2×80=96千米,故D錯(cuò)誤;
故答案為:D .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):
﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),
(1)正數(shù)集合:{ …}
(2)負(fù)數(shù)集合:{ …}
(3)整數(shù)集合:{ …}
(4)分?jǐn)?shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長交AD于點(diǎn)F,連接AE,過B點(diǎn)作BG⊥AE于點(diǎn)G,延長BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(單位:)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定路遠(yuǎn)測(cè)試成績的頻數(shù)分布表
分組 | 頻數(shù) |
12 | |
10 |
請(qǐng)根據(jù)圖表中所提供的信息,完成下列問題:
(1)求表中,的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校八年級(jí)共有800名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績?cè)?/span>范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,對(duì)于任意實(shí)數(shù),,當(dāng)時(shí),滿足的是( )
A. y=﹣3x+2 B. y=2x+1 C. y=2x2+1 D. y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,B為直角,DE是AC的垂直平分線,E在BC上,∠BAE:∠BAC=1:5,則∠C=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、BE分別是等邊△ABC中BC、AC上的高.M、N分別在AD、BE的延長線上,∠CBM=∠ACN.求證:AM=BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點(diǎn)P為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.
①當(dāng)△OPC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
②求△BOD 面積的最大值,并寫出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com