【題目】如圖,在RtABC中,∠ACB90°,CD是斜邊AB上的中線,過點AAECD于點F,交CB于點E,且∠EAB=∠DCB

1)求∠B的度數(shù):

2)求證:BC3CE

【答案】1∠B=30°;(2)詳見解析.

【解析】

1)根據(jù)余角的性質(zhì)得到∠ECF=∠CAF,求得∠CAD2DCB,由CD是斜邊AB上的中線,得到CDBD,推出∠CAB2B,于是得到結(jié)論;

2)根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.

解:(1)∵AECD

∴∠AFC=∠ACB90°,

∴∠CAF+ACF=∠ACF+ECF90°,

∴∠ECF=∠CAF

∵∠EAD=∠DCB,

∴∠CAD2DCB,

CD是斜邊AB上的中線,

CDBD,

∴∠B=∠DCB,

∴∠CAB2B,

∵∠B+CAB90°,

∴∠B30°;

2)∵∠B=∠BAE=∠CAE30°,

AEBECEAE,

BC3CE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2m2)與y軸的交點為A,與x軸的交點分別為Bx1,0),Cx2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點Et,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q

1)求拋物線的解析式;

2)當0t≤8時,求△APC面積的最大值;

3)當t2時,是否存在點P,使以AP、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A.B.C.D四個頂點正好重合于上底面上一點).已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設AE=BF=x(cm).

(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;

(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點在線段外,且,求證:點在線段的垂直平分線上,在證明該結(jié)論時,需添加輔助線,則作法不正確的是(

A.的平分線于點B.過點于點

C.中點,連接D.過點,垂足為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,點是線段上一動點(不與,重合).

1)如圖1,當點的中點,過點的延長線于點,求證:;

2)連接,作于點.時,如圖2

______

②求證:為等腰三角形;

(3)連接CD,∠CDE=30°,在點的運動過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】毎年6月,學校門口的文具店都會購進畢業(yè)季暢銷商品進行銷售.已知校門口“小光文具店“在5月份就售出每本8元的A種品牌同學錄90本,每本10元的B種品牌同學錄175本.

1)某班班長幫班上同學代買A種品牌和B種品牌同學錄共27本,共花費246元,請問班長代買A種品牌和B種品牌同學錄各多少本?

2)該文具店在6月份決定將A種品牌同學錄每本降價3元后銷售,B種品牌同學錄每本降價a%a0)后銷售.于是,6月份該文具店A種品牌同學錄的銷量比5月份多了a%,B種品牌同學錄的銷量比5月份多了(a+20%,且6月份A、B兩種品牌的同學錄的銷售總額達到了2550元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,,可以由繞點順時針旋轉(zhuǎn)得到,其中點與點是對應點,點與點是對應點,連接,且、、在同一條直線上,則的長為(

A.6B.C.D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線BD上有一點P,使PC+PE的和最小,則這個最小值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.

(1)若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?

(2)若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?

查看答案和解析>>

同步練習冊答案