【題目】如圖所示,在直線AB上的一點(diǎn)O,以O為端點(diǎn)依次作射線OE,OC,OD,使∠EOD=90°,∠COB=60°
(1)如圖1當(dāng)∠EOD的一邊OD在射線OB上時(shí),求∠COE的度數(shù);
(2)如圖2當(dāng)∠EOD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)到OC平分∠BOE時(shí),求∠COD的度數(shù);
(3)當(dāng)∠EOD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),且O°<∠AOE<90°(但≠60°)時(shí),試猜想∠AOE與∠COD有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)30;(2)30°;(3)當(dāng)60°<∠AOE<90°時(shí),∠AOE﹣∠COD=30°;當(dāng)0<∠AOE<60°時(shí),∠AOE+∠COD=30°;
【解析】
(1)根據(jù)∠COE=∠EOB-∠BOC計(jì)算即可;
(2)根據(jù)∠COD=∠EOD-∠EOC,只要求出∠EOC即可;
(3)當(dāng)60°<∠AOE<90°時(shí),∠AOE-∠COD=30°;當(dāng)0<∠AOE<60°時(shí),∠AOE+∠COD=30°.
(1)∵∠COE=∠EOB﹣∠BOC,∠EOD=90°,∠COB=60°
∴∠COE=90°﹣60°=30°,
(2)∵OC 平分∠BOE,
∴∠BOC=∠COE=60°,
∴∠COD=∠EOD﹣∠EOC=90°﹣60°=30°;
(3)①如圖2中,當(dāng)60°<∠AOE<90°時(shí),
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,
∴∠AOE+(60°﹣∠COD)=90°,
∴∠AOE﹣∠COD=30°
②如圖3中,當(dāng)0<∠AOE<60°時(shí),∵∠AOC=180°﹣∠BOC=120°,∠EOD=90°,
∴∠AOE+∠COD=30°;
綜上所述,當(dāng)60°<∠AOE<90°時(shí),∠AOE﹣∠COD=30°;
當(dāng)0<∠AOE<60°時(shí),∠AOE+∠COD=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則MC2-MB2等于( 。
A. 9 B. 35 C. 45 D. 無(wú)法計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD中AB = 8cm,BC = 10cm,在邊CD上取一點(diǎn)E,將△ADE折疊,使點(diǎn)D恰好落在BC邊上的點(diǎn)F,則CF的長(zhǎng)為( )
A. 2cm B. 3cm C. 4cm D. 5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長(zhǎng)線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:(1)△ABF≌△DCE;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,等邊△AOB的邊長(zhǎng)為6,點(diǎn)C在邊OA上,點(diǎn)D在邊AB上,且OC=3BD,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過(guò)點(diǎn)C和點(diǎn)D,則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是平面內(nèi)異于點(diǎn)A的任意一點(diǎn),以線
段AE為邊作正方形AEFG,連接EB,GD.
(1) 如圖1,判斷EB與GD的關(guān)系并說(shuō)明理由;
(2) 如圖2,若點(diǎn)E在線段DG上,AB=5,AG=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩組各有12名學(xué)生,組長(zhǎng)繪制了本組5月份家庭用水量的統(tǒng)計(jì)圖表,如圖, 甲組12戶家庭用水量統(tǒng)計(jì)表
用水量(噸) | 4 | 5 | 6 | 9 |
戶數(shù) | 4 | 5 | 2 | 1 |
比較5月份兩組家庭用水量的中位數(shù),下列說(shuō)法正確的是( )
A.甲組比乙組大
B.甲、乙兩組相同
C.乙組比甲組大
D.無(wú)法判斷
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com