【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一動(dòng)點(diǎn),過點(diǎn)D作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,連接EF,則線段EF的最小值是( )
A. 4B. 4.6C. 4.8D. 5
【答案】C
【解析】
連接CD,利用勾股定理列式求出AB,判斷出四邊形CFDE是矩形,根據(jù)矩形的對(duì)角線相等可得EF=CD,再根據(jù)垂線段最短可得CD⊥AB時(shí),線段EF的值最小,然后根據(jù)三角形的面積公式列出方程求解即可.
解:如圖,連接CD.
∵∠ACB=90°,AC=6,BC=8,
∴AB==10,
∵DE⊥AC,DF⊥BC,∠C=90°,
∴四邊形CFDE是矩形,
∴EF=CD,
由垂線段最短可得CD⊥AB時(shí),線段EF的值最小,
此時(shí)S△ABC=BCAC=ABCD,即×8×6=×10CD,
解得CD=4.8,
∴EF=4.8.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)如圖所示的曲尺形框,框和框,用它們分別可以框住下表中的三個(gè)數(shù)(如圖所給示例),
(1)若被框框住的三個(gè)數(shù)中最小的數(shù)為.若這三個(gè)數(shù)的和是,問的值是否存在?若存在,求出的值;若不存在,說明理由;
(2)若被框框住的三個(gè)數(shù)中最小的數(shù)為.若這三個(gè)數(shù)的和是,問的值是否存在?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)P在BC邊上運(yùn)動(dòng). 當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.
(1)如圖1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的長(zhǎng);
(2)將圖1中的△ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點(diǎn),連接AC,BN,PQ,求證:BN=PQ;
(3)如圖3,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度到△AMN,其中D的對(duì)應(yīng)點(diǎn)是M,C的對(duì)應(yīng)點(diǎn)是N,若B,M,N三點(diǎn)在同一直線上,H為BN中點(diǎn),連接CH,猜想BM,MN,CH之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)A在y軸正半軸上,頂點(diǎn)C在x軸正半軸上,拋物線(a<0)的頂點(diǎn)為D,且經(jīng)過點(diǎn)A、B.若△ABD為等腰直角三角形,則a的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,DE平分∠ADC,若∠BDE=15°,則∠OEC 的度數(shù)為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,已知AD=4,AB=3,點(diǎn)P是直線AD上的一點(diǎn),PE⊥AC,PF⊥BD,E,F分別是垂足,AG⊥BD與點(diǎn)G,
(1) 如圖①點(diǎn)P在線段AD上,求PE+PF的值;
(2) 如圖②點(diǎn)P在直線AD上,求PEPF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空
如圖:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求證:CE∥DF.請(qǐng)完成下面的解題過程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分線的定義)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B、C、D是反比例函數(shù)y=(x>0)圖象上四個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),分別過這些點(diǎn)向橫軸或縱軸作垂線段,以垂線段所在的正方形(如圖)的邊長(zhǎng)為半徑作四分之一圓周的兩條弧,組成四個(gè)橄欖形(陰影部分),則這四個(gè)橄欖形的面積總和是__________(用含π的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com