【題目】點P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1,y2,y3的大小關系是_____.
科目:初中數(shù)學 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AB=5,AD=3.以點 B 為中心,順時針旋轉矩形 BADC,得到矩形 BEFG,點 A、D、C 的對應點分別為 E、F、G.
(1)如圖1,當點 E 落在 CD 邊上時,求線段 CE 的長;
(2)如圖2,當點 E 落在線段 DF 上時,求證:∠ABD=∠EBD;
(3)在(2)的條件下,CD 與 BE 交于點 H,求線段 DH 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】5G時代即將來臨,湖北省提出“建成全國領先、中部一流5G網(wǎng)絡”的戰(zhàn)略目標.據(jù)統(tǒng)計,目前湖北5G基站的數(shù)量有1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座.
(1)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;
(2)若2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4a經(jīng)過A(﹣1,0)、C(0,4)兩點,與x軸交于另一點B,
(1)求拋物線的解析式;
(2)已知點D(m,m+1)在第一象限的拋物線上,求點D的坐標.
(3)設直線BC為y=mx+n(k≠0),若mx+n≥ax2+bx﹣4a,結合函數(shù)圖象,寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0<x1<1,有下列結論:①abc>0;②﹣3<x2<﹣2;③4a﹣2b+c<﹣1;④當m為任意實數(shù)時,a﹣b<am2+bm;⑤若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑥a>.其中,正確結論的個數(shù)為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.
(1)求證:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com