【題目】如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.
(1)求證:與相切;
(2)連接,求的值.
【答案】(1)見解析;(2)
【解析】
(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設(shè),則,.根據(jù)兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數(shù)的定義即可求出的值.
(1)連接,.
∵是的直徑,弦于點,
∴,.
∵,
∴.
∴為等邊三角形.
∴,∠DAE=∠EAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
∴∠1=∠DCA-∠OCA=30°,
∵,
∴∠DCG=∠CDA=∠60°,
∴∠OCG=∠DCG+∠1=60°+30°=90°,
∴.
∴與相切.
(2)連接EF,作于點.
設(shè),則,.
∵與相切,
∴.
又∵,
∴.
又∵,
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形.
∴,.
由(1)得,
∴,.
∴.
∵在中,,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,AD∥BC,對角線AC、BD交于點O,DO=BO,過點C作CE⊥AC,交BD的延長線于點E,交AD的延長線于點F,且滿足∠DCE=∠ACB.
(1)求證:四邊形ABCD是矩形;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月18日,一年一度的“風(fēng)箏節(jié)”活動在市政廣場舉行,如圖,廣場上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測得風(fēng)箏A的仰角為67°,同一時刻小蕓在附近一座距地面30米高(BC=30米)的居民樓頂B處測得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD=40米,牽引端距地面高度DE=1.5米,根據(jù)以上條件計算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點A(,0)、B(0,),以AB為邊作正方形ABCB1,延長CB1交x軸于點A1,以A1B1為邊作正方形A1B1C1B2,延長C1B2交x軸于點A2,以A2B2為邊作正方形A2B2C2B3,延長C2B3交x軸于點A3,以A3B3為邊作正方形A3B3C3B4,…,依此規(guī)律,則△A6B7A7的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.
(1)求證:四邊形CDBE為矩形;
(2)若AC=2,,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點 A的坐標(biāo)為(4,2),頂點B,C分別在軸,軸的正半軸上.
(1)求證:∠OCB=∠ABE;
(2)求OC長的取值范圍;
(3)若D的坐標(biāo)為(,),請說明隨的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京市環(huán)境保護(hù)監(jiān)測中心每月向公眾公布北京市各區(qū)域的空氣質(zhì)量狀況.2019年1月份各區(qū)域的濃度情況如表:
各區(qū)域1月份濃度(單位:微粒/立方米)表
區(qū)域 | 濃度 | 區(qū)域 | 濃度 | 區(qū)域 | 濃度 |
懷柔 | 33 | 海淀 | 50 | 平谷 | 45 |
密云 | 34 | 延慶 | 51 | 豐臺 | 61 |
門頭溝 | 41 | 西城 | 61 | 大興 | 72 |
順義 | 41 | 東城 | 60 | 開發(fā)區(qū) | 65 |
昌平 | 38 | 石景山 | 55 | 房山 | 62 |
朝陽 | 54 | 通州 | 57 |
從上述表格隨機(jī)選擇一個區(qū)域,其2019年1月份的濃度小于51微克/立方米的概率是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點,,給出如下定義:若,為某個三角形的頂點,且邊上的高,滿足,則稱該三角形為點,的“生成三角形”.
(1)已知點;
①若以線段為底的某等腰三角形恰好是點,的“生成三角形”,求該三角形的腰長;
②若是點,的“生成三角形”,且點在軸上,點在直線上,則點的坐標(biāo)為______;
(2)的圓心為點,半徑為2,點的坐標(biāo)為,為直線上一點,若存在,是點,的“生成三角形”,且邊與有公共點,直接寫出點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應(yīng)點為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標(biāo)為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com