【題目】如圖,矩形ABCD中,AD=2,AB=5,P為CD邊上的動點,當(dāng)△ADP與△BCP相似時,DP= .
【答案】1或4或2.5
【解析】解:①當(dāng)△APD∽△PBC時, = ,
即 = ,
解得:PD=1,或PD=4;
②當(dāng)△PAD∽△PBC時, = ,即 = ,
解得:DP=2.5.
綜上所述,DP的長度是1或4或2.5.
故答案是:1或4或2.5.
【考點精析】利用矩形的性質(zhì)和相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個頂點都在格點上,點的坐標(biāo)為.
(1)畫出關(guān)于軸對稱的,并寫出點的坐標(biāo) .
(2)畫出繞原點旋轉(zhuǎn)后得到的,并寫出點的坐標(biāo) .
(3)是否為直角三角形?答 (填是或者不是).
(4)利用格點圖,畫出邊上的高,并求出的長, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,DC切⊙O于點C,若∠A=25°,則∠D等于( )
A.20°
B.30°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C上測得兩建筑物A,B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A,D,B在同一直線上,求建筑物A,B間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進(jìn)行了以下探索:
設(shè)(其中、、、均為整數(shù)),則有.
,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)、、、均為正整數(shù)時,若,用含、的式子分別表示、,得: , ;
(2)利用所探索的結(jié)論,找一組正整數(shù)、、、填空: ;
(3)若,且、、均為正整數(shù),求的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)4(3x5)2=(x4)2;
(2)y22y8=0;
(3)x(x3)=4(x1) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)同題情景:如圖1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明想到一種方法,但是沒有解答完:
如圖2,過P作PE//AB,∴∠APE+∠PAB=180°,
∴∠APE=180°-∠PAB=180°-130°=50°
∵AB//CD,∴PE//CD.
……
請你幫助小明完成剩余的解答.
(2)問題遷移:請你依據(jù)小明的解題思路,解答下面的問題:
如圖3,AD//BC,當(dāng)點P在A、B兩點之間時,∠ADP=∠α,∠BCP=∠β,則∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路去上學(xué),她先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學(xué)校(在整個過程中小麗步行的速度不變),圖中的折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家的時間x(分)之間的函數(shù)關(guān)系.
(1)求小麗步行的速度及學(xué)校與公交站臺乙之間的距離;
(2)當(dāng)8≤x≤15時,求y與x之間的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com