【題目】解方程:

1﹣2x=6

2x﹣11=7

3x+13=5x+37

43xx=+1

【答案】1x=3;(2x=18;(3x=6;(4x=

【解析】試題分析:(1)兩邊都除以-2,把系數(shù)化為1即可;(2)移項(xiàng),合并同類項(xiàng)即可;(3)移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可;(4)合并同類項(xiàng),系數(shù)化為1即可.

解:1﹣2x=6,

x=﹣3

2x﹣11=7,

x=7+11

x=18;

3x+13=5x+37,

x﹣5x=37﹣13,

﹣4x=24

x=﹣6

43x﹣x=﹣+1,

2x=

x=

點(diǎn)睛:本題考查了一元一次方程的解法,解一元一次方程的基本步驟為:①去分母;②去括號;③移項(xiàng);④合并同類項(xiàng);⑤未知數(shù)的系數(shù)化為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月,某中學(xué)以“每天閱讀l小時(shí)”為主題,對學(xué)生最喜愛的書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)請把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

(2)如果這所中學(xué)共有學(xué)生900名,那么請你估算最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列各式:(ab2=a2b2,(ab3=a3b3,(ab4=a4b4

回答下列三個(gè)問題:

1)驗(yàn)證:(100=   2100×100=   ;

2)通過上述驗(yàn)證,歸納得出:(abn=   ; abcn=   

3)請應(yīng)用上述性質(zhì)計(jì)算:(﹣0.1252017×22016×42015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達(dá)4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.

當(dāng)?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進(jìn)行粗加工,每天可加工16噸;如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時(shí)進(jìn)行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:

方案一:將蔬菜全部進(jìn)行粗加工;

方案二:盡可能多的對蔬菜進(jìn)行精加工,沒有來得及進(jìn)行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.

你認(rèn)為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC上一點(diǎn),點(diǎn)F在射線CM上,∠AEF=90°,AE=EF,過點(diǎn)F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關(guān)系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點(diǎn)作圓,如圖2,若EC=4,∠CEF=15°,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥FC,D是AB上一點(diǎn),DF交AC于點(diǎn)E,DE=FE,分別延長FD和CB交于點(diǎn)G.
(1)求證:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD ,點(diǎn)O 是對角線AC 的中點(diǎn),EF 過點(diǎn)O,AD,BC 分別相交于點(diǎn)E,F(xiàn),GH 過點(diǎn)O,AB,CD 分別相交于點(diǎn)G,H,連接EG,F(xiàn)G,F(xiàn)H,EH.求證:四邊形EGFH 是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,AE⊥BC,垂足為點(diǎn)E,CE=CD,點(diǎn)FCE的中點(diǎn)點(diǎn)GCD上的一點(diǎn),連接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的長;

(2)求證:∠CEG=∠AGE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線AP交BC的延長線于點(diǎn)E,射線BP交DE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步練習(xí)冊答案